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REVIEW:
RANDOM VARIABLES AND
SAMPLING THEORY

In the discussion of estimation techniques in this text, much attention is given to the following
properties of estimators: unbiasedness, consistency, and efficiency. It is essential that you have a
secure understanding of these concepts, and the text assumes that you have taken an introductory
statistics course that has treated them in some depth. This chapter offers a brief review.

Discrete Random Variables

Your intuitive notion of probability is almost certainly perfectly adequate for the purposes of this text,
and so we shall skip the traditional section on pure probability theory, fascinating subject though it
may be. Many people have direct experience of probability through games of chance and gambling,
and their interest in what they are doing results in an amazingly high level of technical competence,
usually with no formal training.

We shall begin straight away with discrete random variables. A random variable is any variable
whose value cannot be predicted exactly. A discrete random variable is one that has a specific set of
possible values. An example is the total score when two dice are thrown. An example of a random
variable that is not discrete is the temperature in a room. It can take any one of a continuing range of
values and is an example of a continuous random variable. We shall come to these later in this review.

Continuing with the example of the two dice, suppose that one of them is green and the other red.
When they are thrown, there are 36 possible experimental outcomes, since the green one can be any of
the numbers from 1 to 6 and the red one likewise. The random variable defined as their sum, which
we will denote X, can taken only one of 11 values — the numbers from 2 to 12. The relationship
between the experimental outcomes and the values of this random variable is illustrated in Figure R.1.

red 1 2 3 4 5 6
green

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Figure R.1. Outcomes in the example with two dice
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TasLE R.1
Value of X 2 3 4 5 6 7 8 9 10 11 12
Frequency 1 2 3 4 5 6 5 4 3 2 1

Probability 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Assuming that the dice are fair, we can use Figure R.1 to work out the probability of the
occurrence of each value of X. Since there are 36 different combinations of the dice, each outcome
has probability 1/36. {Green = 1, red = 1} is the only combination that gives a total of 2, so the
probability of X = 2 is 1/36. To obtain X = 7, we would need {green = 1, red = 6} or {green = 2, red =
5} or {green = 3, red =4} or {green =4, red = 3} or {green = 5, red = 2} or {green = 6, red = 1}. In
this case six of the possible outcomes would do, so the probability of throwing 7 is 6/36. All the
probabilities are given in Table R.1. If you add all the probabilities together, you get exactly 1. This is
because it is 100 percent certain that the value must be one of the numbers from 2 to 12.

The set of all possible values of a random variable is described as the population from which it is
drawn. In this case, the population is the set of numbers from 2 to 12.

Exercises

R.1 A random variable X is defined to be the difference between the higher value and the lower
value when two dice are thrown. If they have the same value, X is defined to be 0. Find the
probability distribution for X.

R.2* A random variable X is defined to be the larger of the two values when two dice are thrown, or
the value if the values are the same. Find the probability distribution for X. [Note: Answers to
exercises marked with an asterisk are provided in the Student Guide.]

Expected Values of Discrete Random Variables

The expected value of a discrete random variable is the weighted average of all its possible values,
taking the probability of each outcome as its weight. You calculate it by multiplying each possible
value of the random variable by its probability and adding. In mathematical terms, if the random
variable is denoted X, its expected value is denoted E(X).

Let us suppose that X can take n particular values xi, x5, ..., x, and that the probability of x; is p;.
Then

E(X)=X,py +..4X,p, = O X;p; (R.1)

i=l

(Appendix R.1 provides an explanation of X notation for those who would like to review its use.)
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TaBLE R.2

Expected Value of X, Example with Two Dice

X J4 Xp X P Xp
X1 P1 X1P1 2 1/36 2/36
X2 D2 Xop2 3 2/36 6/36
X3 D3 X3P3 4 3/36 12/36
5 4736 20/36
6 5/36 30/36
7 6/36 42/36
8 5/36 40/36
9 4736 36/36
10 3/36 30/36
11 2/36 22/36
X, Pa XuPn 12 1/36 12/36
Total E(X)=Y x,p, 252/36 =7

In the case of the two dice, the values x; to x, were the numbers 2 to 12: x; =2, x, =3, ..., x;1 =
12, and p; = 1/36, p, = 2/36, ..., p11 = 1/36. The easiest and neatest way to calculate an expected value
is to use a spreadsheet. The left half of Table R.2 shows the working in abstract. The right half
shows the working for the present example. As you can see from the table, the expected value is
equal to 7.

Before going any further, let us consider an even simpler example of a random variable, the
number obtained when you throw just one die. (Pedantic note: This is the singular of the word whose
plural is dice. Two dice, one die. Like two mice, one mie.) (Well, two mice, one mouse. Like two
hice, one house. Peculiar language, English.)

There are six possible outcomes: x; = 1, x, =2, x3 = 3, x4 = 4, x5 = 5, x¢ = 6. Each has probability
1/6. Using these data to compute the expected value, you find that it is equal to 3.5. Thus in this case
the expected value of the random variable is a number you could not obtain at all.

The expected value of a random variable is frequently described as its population mean. In the
case of a random variable X, the population mean is often denoted by py, or just y, if there is no
ambiguity.

Exercises

R.3 Find the expected value of X in Exercise R.1.
R.4* Find the expected value of X in Exercise R.2.

Expected Values of Functions of Discrete Random Variables

Let g(X) be any function of X. Then E[g(X)], the expected value of g(X), is given by

E[g(X)] = g(x)p; +..+8(x,)p, = X g(x)p, (R2)

i=1
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TaBLE R.3

Expected Value of g(X), Example with Two Dice

Expected value of g(X) Expected value of X*
X p 164 §(X0p X p X X’p
Xy 4 8(xy) 8xpi 2 1/36 4 0.11
RY) P2 8(x2) 8(x2)p2 3 2/36 9 0.50
X3 D3 g(x3) g(x3)p3 4 3/36 16 1.33
5 4/36 25 2.78
6 5/36 36 5.00
7 6/36 49 8.17
8 5/36 64 8.89
9 4/36 81 9.00
10 3/36 100 8.83
11 2/36 121 6.72
X Pn 8(x,) 8(X)pn 12 1/36 144 4.00
E[g(X)]
Total d 4.
otal _ 2 2(x)p, 54.83

where the summation is taken over all possible values of X.

The left half of Table R.3 illustrates the calculation of the expected value of a function of X.
Suppose that X can take the n different values x; to x,, with associated probabilities p; to p,. In the
first column, you write down all the values that X can take. In the second, you write down the
corresponding probabilities. In the third, you calculate the value of the function for the corresponding
value of X. In the fourth, you multiply columns 2 and 3. The answer is given by the total of column 4.

The right half of Table R.3 shows the calculation of the expected value of X for the example
with two dice. You might be tempted to think that this is equal to 1, but this is not correct. E(X?) is
54.83. The expected value of X was shown in Table R.2 to be equal to 7. Thus it is not true that E(X?)
is equal to ,uz,which means that you have to be careful to distinguish between E(X %y and [E(X)]* (the
latter being E(X) multiplied by E(X), that is, ,uz).

Exercises

R.5 If X is a random variable with mean u, and A is a constant, prove that the expected value of AX
is AuL.
R.6 Calculate E(X?) for X defined in Exercise R.1.

R.7* Calculate E(X 2) for X defined in Exercise R.2.

Expected Value Rules

There are three rules that we are going to use over and over again. They are virtually self-evident, and
they are equally valid for discrete and continuous random variables.
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Rule 1 The expected value of the sum of several variables is equal to the sum of their
expected values. For example, if you have three random variables X, Y, and Z,

EX+Y+2) =EX) +EQY)+EZ) (R.3)

Rule 2 If you multiply a random variable by a constant, you multiply its expected value by
the same constant. If X is a random variable and b is a constant,

E(bX) = bE(X) (R4)
Rule 3  The expected value of a constant is that constant. For example, if b is a constant,
Eb)=b (R.5)

Rule 2 has already been proved as Exercise R.5. Rule 3 is trivial in that it follows from the definition
of a constant. Although the proof of Rule 1 is quite easy, we will omit it here.

Putting the three rules together, you can simplify more complicated expressions. For example,
suppose you wish to calculate E(Y), where

Y= bl + bzX (R6)
and b, and b, are constants. Then,

E(Y) = E(b1 + b2X)
= E(b)) + E(b,X) using Rule 1
= b + h,E(X) using Rules 2 and 3 (R.7)

Therefore, instead of calculating E(Y) directly, you could calculate E(X) and obtain E(Y) from
equation (R.7).

Exercise
R.8 Let X be the total when two dice are thrown. Calculate the possible values of Y, where Y is
given by

Y =2X+3

and hence calculate £(Y). Show that this is equal to 2E(X) + 3.

Independence of Random Variables

Two random variables X and Y are said to be independent if E[g(X)h(Y)] is equal to E[g(X)] E[h(Y)]
for any functions g(X) and A(Y). Independence implies, as an important special case, that E(XY) is
equal to E(X)E(Y).
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Population Variance of a Discrete Random Variable

In this text there is only one function of X in which we shall take much interest, and that is its
population variance, a useful measure of the dispersion of its probability distribution. It is defined as
the expected value of the square of the difference between X and its mean, that is, of (X — u)*, where 1
is the population mean. It is usually denoted o% , with the subscript being dropped when it is obvious

that it is referring to a particular variable.

ol =E(X - u)*]
5 R n s (R.8)
=X, —W@) p;+.t+(x, ) p,=X(x; — 1) p,

i=1

From o} one obtains o, the population standard deviation, an equally popular measure of the

dispersion of the probability distribution; the standard deviation of a random variable is the square
root of its variance.

We will illustrate the calculation of population variance with the example of the two dice. Since
U=EX)=7,(X- ,u)z is (X — 7)* in this case. We shall calculate the expected value of (X — 7)? using
Table R.3 as a pattern. An extra column, (X — y), has been introduced as a step in the calculation of

(X — p)*. By summing the last column in Table R.4, one finds that o} is equal to 5.83. Hence o, ,

the standard deviation, is equal to +/5.83 , which is 2.41.

TaBLE R.4

Population Variance of X, Example with Two Dice

X p X-u  X-py? X-w’p
2 1/36 5 25 0.69
3 236 4 16 0.89
4 3/36 3 9 0.75
5 4136 2 4 0.44
6 5136 -1 1 0.14
7 6/36 0 0 0.00
8 5136 1 1 0.14
9 4136 2 4 0.44
10 336 3 9 0.75
1 236 4 16 0.89
12 1/36 5 25 0.69

Total 5.83
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One particular use of the expected value rules that is quite important is to show that the population
variance of a random variable can be written

oy = E(X*)-pu? (R.9)

an expression that is sometimes more convenient than the original definition. The proof is a good
example of the use of the expected value rules. From its definition,

ox =E(X -w)’]
=E(X*-2uX +u’)
=E(X*)+E(-2uX)+E(u’)
=E(X*)-2uE(X)+u’
=E(X*)-2u’+u’
=E(X*)-u’

(R.10)

Thus, if you wish to calculate the population variance of X, you can calculate the expected value of X

and subtract 11°.

Exercises

R.9 Calculate the population variance and the standard deviation of X as defined in Exercise R.1,
using the definition given by equation (R.8).

R.10* Calculate the population variance and the standard deviation of X as defined in Exercise R.2,
using the definition given by equation (R.8).

R.11 Using equation (R.9), find the variance of the random variable X defined in Exercise R.1 and
show that the answer is the same as that obtained in Exercise R.9. (Note: You have already
calculated u in Exercise R.3 and E(X 2) in Exercise R.6.)

R.12* Using equation (R.9), find the variance of the random variable X defined in Exercise R.1 and
show that the answer is the same as that obtained in Exercise R.10. (Note: You have already
calculated u in Exercise R.4 and E(X 2) in Exercise R.7.)

Probability Density

Discrete random variables are very easy to handle in that, by definition, they can take only a finite set
of values. Each of these values has a "packet" of probability associated with it, and, if you know the
size of these packets, you can calculate the population mean and variance with no trouble. The sum of
the probabilities is equal to 1. This is illustrated in Figure R.2 for the example with two dice. X can
take values from 2 to 12 and the associated probabilities are as shown.
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packets of
probability

| 1
1 2 3 4 5 6 8 9 10 11 12 «x

7

Figure R.2. Discrete probabilities (example with two dice)

Unfortunately, the analysis in this text usually deals with continuous random variables, which
can take an infinite number of values. The discussion will be illustrated with the example of the
temperature in a room. For the sake of argument, we will assume that this varies within the limits of
55 to 75°F, and initially we will suppose that it is equally likely to be anywhere within this range.

Since there are an infinite number of different values that the temperature can take, it is useless
trying to divide the probability into little packets and we have to adopt a different approach. Instead,
we talk about the probability of the random variable lying within a given interval, and we represent
the probability graphically as an area within the interval. For example, in the present case, the
probability of X lying in the interval 59 to 60 is 0.05 since this range is one twentieth of the complete
range 55 to 75. Figure R.3 shows the rectangle depicting the probability of X lying in this interval.
Since its area is 0.05 and its base is one, its height must be 0.05. The same is true for all the other
one-degree intervals in the range that X can take.

Having found the height at all points in the range, we can answer such questions as "What is the
probability that the temperature lies between 65 and 70°F?". The answer is given by the area in the
interval 65 to 70, represented by the shaded area in Figure R.4. The base of the shaded area is 5, and
its height is 0.05, so the area is 0.25. The probability is a quarter, which is obvious anyway in that 65
to 70°F is a quarter of the whole range.

height
(probability density)

0.05

55 59 60 65 70 75  temperature

Figure R.3
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height
(probability density)

0.05

55 60 65 70 75 temperature

Figure R.4

The height at any point is formally described as the probability density at that point, and, if it can
be written as a function of the random variable, it is known as the "probability density function". In
this case it is given by f(x), where X is the temperature and

fx)=0.05 for 55<x<75
fx)=0 for x<55o0rx>75 (R.11)

The foregoing example was particularly simple to handle because the probability density
function was constant over the range of possible values of X. Next we will consider an example in
which the function is not constant, because not all temperatures are equally likely. We will suppose
that the central heating and air conditioning have been fixed so that the temperature never falls below
65°F, and that on hot days the temperature will exceed this, with a maximum of 75°F as before. We
will suppose that the probability is greatest at 65°F and that it decreases evenly to 0 at 75°F, as shown
in Figure R.5.

The total area within the range, as always, is equal to 1, because the total probability is equal to
1. The area of the triangle is 2 x base x height, so one has

12 x 10 x height = 1 (R.12)

probability
density

0.20

0.15

0.05

65 70 75 temperature

Figure R.5
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probability
density

0.20

0.05 |

65 70 75 temperature

Figure R.6

and the height at 65°F is equal to 0.20.

Suppose again that we want to know the probability of the temperature lying between 65 and
70°F. It is given by the shaded area in Figure R.6, and with a little geometry you should be able to
verify that it is equal to 0.75. If you prefer to talk in terms of percentages, this means that there is a 75
percent chance that the temperature will lie between 65 and 70°F, and only a 25 percent chance that it
will lie between 70 and 75°F.

In this case the probability density function is given by f(x), where

flix)=1.5-0.02x for 65<x<75
fix)=0 for x < 65 or x > 75. (R.13)

(You can verify that f{x) gives 0.20 at 65°F and 0 at 75°F.)

Now for some good news and some bad news. First, the bad news. If you want to calculate
probabilities for more complicated, curved functions, simple geometry will not do. In general you
have to use integral calculus or refer to specialized tables, if they exist. Integral calculus is also used
in the definitions of the expected value and variance of a continuous random variable.

Now for the good news. First, specialized probability tables do exist for all the functions that are
going to interest us in practice. Second, expected values and variances have much the same meaning
for continuous random variables that they have for discrete ones (formal definitions will be found in
Appendix R.2), and the expected value rules work in exactly the same way.

Fixed and Random Components of a Random Variable

Instead of regarding a random variable as a single entity, it is often possible and convenient to break it
down into a fixed component and a pure random component, the fixed component always being the
population mean. If X is a random variable and u its population mean, one may make the following
decomposition:
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X=u+u, (R.14)

where u is what will be called the pure random component (in the context of regression analysis, it is
usually described as the disturbance term).
You could of course look at it the other way and say that the random component, u, is defined to

be the difference between X and
u=X-p (R.15)
It follows from its definition that the expected value of u is 0. From equation (R.15),
Eu) = E(x— ) = E(o) + B(-) = 4 — 1= 0 (R.16)

Since all the variation in X is due to u, it is not surprising that the population variance of X is equal to
the population variance of u. This is easy to prove. By definition,

oy =E[(X -w)*1=EW®) (R.17)
and

G,f = E[(u — mean of u)z]
, 5 (R.18)
=E[u—-0)"1=E@")
Hence o can equivalently be defined to be the variance of X or u.
To summarize, if X is a random variable defined by (R.14), where u is a fixed number and u is a
random component, with mean 0 and population variance o”, then X has population mean y and

population variance .

Estimators

So far we have assumed that we have exact information about the random variable under discussion,
in particular that we know the probability distribution, in the case of a discrete random variable, or the
probability density function, in the case of a continuous variable. With this information it is possible
to work out the population mean and variance and any other population characteristics in which we
might be interested.

Now, in practice, except for artificially simple random variables such as the numbers on thrown
dice, you do not know the exact probability distribution or density function. It follows that you do not
know the population mean or variance. However, you would like to obtain an estimate of them or
some other population characteristic.

The procedure is always the same. You take a sample of n observations and derive an estimate of
the population characteristic using some appropriate formula. You should be careful to make the
important distinction that the formula is technically known as an estimator; the number that is
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TaBLE R.5

Population characteristic Estimator

— 1 n
Mean H X=—2x

n i=l
1 1 2 2 [ Y2
Population variance o sT = n ;(xi -X)
n—1i=

calculated from the sample using it is known as the estimate. The estimator is a general rule or
formula, whereas the estimate is a specific number that will vary from sample to sample.
Table R.5 gives the usual estimators for the two most important population characteristics. The

sample mean, X , is the usual estimator of the population mean, and the formula for s* given in Table
R.5 is the usual estimator of the population variance.

Note that these are the usual estimators of the population mean and variance; they are not the
only ones. You are probably so accustomed to using the sample mean as an estimator of u that you are
not aware of any alternatives. Of course, not all the estimators you can think of are equally good. The

reason that we do in fact use X is that it is the best according to two very important criteria,
unbiasedness and efficiency. These criteria will be discussed later.

Estimators Are Random Variables

An estimator is a special case of a random variable. This is because it is a combination of the values
of X in a sample, and, since X is a random variable, a combination of a set of its values must also be a

random variable. For instance, take X , the estimator of the mean:
— 1 12
X=—x+x+.+x,)=—2x (R.19)
n ni=1

We have just seen that the value of X in observation i may be decomposed into two parts: the fixed

part, u, and the pure random component, u;:

Xi = U+ u;. (R20)

Hence

)le(u+u+...+u)+l(u1 YUy +otu,)
" n (R.21)
1 _ _
=—(nu)+u=Uu+u
n

where u is the average of u; in the sample.
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probability density probability density
function of X function of X

Figure R.7. Comparison of the probability density functions of a
single observation and the mean of a sample

From this you can see that X , like X, has both a fixed component and a pure random component.
Its fixed component is u, the population mean of X, and its pure random component is u , the average
of the pure random components in the sample.

The probability density functions of both X and X have been drawn in the same diagram in
Figure R.7. By way of illustration, X is assumed to have a normal distribution. You will see that the
distributions of both X and X are centered over y, the population mean. The difference between them
is that the distribution for X is narrower and taller. X is likely to be closer to u than a single
observation on X, because its random component u is an average of the pure random components u,
u, ..., U, in the sample, and these are likely to cancel each other out to some extent when the average
is taken. Consequently the population variance of # is only a fraction of the population variance of u.
It will be shown in Section 1.7 that, if the population variance of u is o7, then the population variance
of i is o”/n.

5%, the unbiased estimator of the population variance of X, is also a random variable. Subtracting
(R.21) from (R.20),

X, —X=u —u (R.22)

Hence
2 1 Y 2 1 —\2
- —X)l=—— - R.2
s n—l,-gl[(x' )] n_lgl[(u, u)] (R.23)

Thus s* depends on (and only on) the pure random components of the observations on X in the
sample. Since these change from sample to sample, the value of the estimator s> will change from
sample to sample.
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Unbiasedness

Since estimators are random variables, it follows that only by coincidence will an estimate be exactly
equal to the population characteristic. Generally there will be some degree of error, which will be
small or large, positive or negative, according to the pure random components of the values of X in the
sample.

Although this must be accepted, it is nevertheless desirable that the estimator should be accurate
on average in the long run, to put it intuitively. To put it technically, we should like the expected
value of the estimator to be equal to the population characteristic. If this is true, the estimator is said
to be unbiased. If it is not, the estimator is said to be biased, and the difference between its expected
value and the population characteristic is described as the bias.

Let us start with the sample mean. Is this an unbiased estimator of the population mean? Is
E(X )equal to u? Yes, it is, and it follows immediately from (R.21).

X has two components, ¢ and . u is the average of the pure random components of the
values of X in the sample, and since the expected value of the pure random component in any
observation is 0, the expected value of u is 0. Hence

EX)=E(u+i)=EW+E@=u+0=u (R.24)

However, this is not the only unbiased estimator of u that we could construct. To keep the analysis
simple, suppose that we have a sample of just two observations, x; and x,. Any weighted average of
the observations x; and x, will be an unbiased estimator, provided that the weights add up to 1. To see
this, suppose we construct a generalized estimator:

Z= llxl + 2,2)62 (R25)
The expected value of Z is given by

E(Z)=E(Ax, +A,x,) = E(A4x))+ E(A,x,)
=ME(x)+AE(xy))=Au+A,u (R.26)
=(A +2A,)u

If A; and A, add up to 1, we have E(Z) = u, and Z is an unbiased estimator of (.

Thus, in principle, we have an infinite number of unbiased estimators. How do we choose
among them? Why do we always in fact use the sample average, with 4, = A, = 0.5? Perhaps you
think that it would be unfair to give the observations different weights, or that asymmetry should be
avoided on principle. However, we are not concerned with fairness, or with symmetry for its own
sake. We will find in the next section that there is a more compelling reason.

So far we have been discussing only estimators of the population mean. It was asserted that 57, as
defined in Table R.5, is an estimator of the population variance, >. One may show that the expected
value of s* is ¢, and hence that it is an unbiased estimator of the population variance, provided that
the observations in the sample are generated independently of each another. The proof, though not
mathematically difficult, is laborious, and it has been consigned to Appendix R.3 at the end of this
review.
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probability density
function

estimator B

/

estimator A

/

Hx

Figure R.8. Efficient and inefficient estimators

Efficiency

Unbiasedness is one desirable feature of an estimator, but it is not the only one. Another important
consideration is its reliability. It is all very well for an estimator to be accurate on average in the long
run, but, as Keynes once said, in the long run we are all dead. We want the estimator to have as high a
probability as possible of giving a close estimate of the population characteristic, which means that
we want its probability density function to be as concentrated as possible around the true value. One
way of summarizing this is to say that we want its population variance to be as small as possible.

Suppose that we have two estimators of the population mean, that they are calculated using the
same information, that they are both unbiased, and that their probability density functions are as
shown in Figure R.8. Since the probability density function for estimator B is more highly
concentrated than that for estimator A, it is more likely to give an accurate estimate. It is therefore said
to be more efficient, to use the technical term.

Note carefully that the definition says "more likely". Even though estimator B is more efficient,
that does not mean that it will always give the more accurate estimate. Some times it will have a bad
day, and estimator A will have a good day, and A will be closer to the truth. But the probability of A
being more accurate than B will be less than 50 percent.

It is rather like the issue of whether you should fasten your seat belt when driving a vehicle. A
large number of surveys in different countries have shown that you are much less likely to be killed or
seriously injured in a road accident if you wear a seat belt, but there are always the odd occasions
when individuals not wearing belts have miraculously escaped when they could have been killed, had
they been strapped in. The surveys do not deny this. They simply conclude that the odds are on the
side of belting up. Similarly, the odds are on the side of the efficient estimator. (Gruesome comment:
In countries where wearing seat belts has been made compulsory, there has been a fall in the supply of
organs from crash victims for transplants.)

We have said that we want the variance of an estimator to be as small as possible, and that the
efficient estimator is the one with the smallest variance. We shall now investigate the variance of the
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generalized estimator of the population mean and show that it is minimized when the two
observations are given equal weight.

Provided that x; and x, are independent observations, the population variance of the generalized
estimator is given by

o, = population varianceof (4,x; + A,x,)

) 2
=0, T0;, + ZGM

Aoxy

2.2 2.2 . . (R.27)
=Ao, +A40o, +244,0,, if x and x, areindependent

=i +4;)0”

(We are anticipating the variance rules discussed in Chapter 1. o the population covariance of x;

XX ?
and x,, is 0 if x; and x, are generated independently.)
Now, we have already seen that A; and A, must add up to 1 if the estimator is to be unbiased.

Hence for unbiased estimators 4, equals (1 — A;) and
N+ =X +1=-1)" =24 —24, +1 (R.28)

Since we want to choose A; in such a way that the variance is minimized, we want to choose it to
minimize (24, — 24, + 1). You could solve this problem graphically or by using the differential
calculus. In either case, the minimum value is reached when 4, is equal to 0.5. Hence 4, is also equal
to 0.5.

We have thus shown that the sample average has the smallest variance of estimators of this kind.
This means that it has the most concentrated probability distribution around the true mean, and hence
that (in a probabilistic sense) it is the most accurate. To use the correct terminology, of the set of
unbiased estimators, it is the most efficient. Of course we have shown this only for the case where the
sample consists of just two observations, but the conclusions are valid for samples of any size,
provided that the observations are independent of one another.

Two final points. First, efficiency is a comparative concept. You should use the term only when
comparing alternative estimators. You should not use it to summarize changes in the variance of a
single estimator. In particular, as we shall see in the next section, the variance of an estimator
generally decreases as the sample size increases, but it would be wrong to say that the estimator is
becoming more efficient. You must reserve the term for comparisons of different estimators. Second,
you can compare the efficiency of alternative estimators only if they are using the same information,
for example, the same set of observations on a number of random variables. If the estimators use
different information, one may well have a smaller variance, but it would not be correct to describe it
as being more efficient.

Exercises

R.13 For the special case o° = 1 and a sample of two observations, calculate the variance of the

generalized estimator of the population mean using equation (R.28) with values of A, from 0O to
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1 at steps of 0.1, and plot it in a diagram. Is it important that the weights A; and A, should be
exactly equal?

R.14 Show that, when you have n observations, the condition that the generalized estimator (A,x; + ...
+ A.x,) should be an unbiased estimator of gis A; + ... + A, = 1.

Conflicts between Unbiasedness and Minimum Variance

We have seen in this review that it is desirable that an estimator be unbiased and that it have the
smallest possible variance. These are two quite different criteria and occasionally they conflict with
each other. It sometimes happens that one can construct two estimators of a population characteristic,
one of which is unbiased (A in Figure R.9), the other being biased but having smaller variance (B).

A will be better in the sense that it is unbiased, but B is better in the sense that its estimates are
always close to the true value. How do you choose between them?

It will depend on the circumstances. If you are not bothered by errors, provided that in the long
run they cancel out, you should probably choose A. On the other hand, if you can tolerate small errors,
but not large ones, you should choose B.

Technically speaking, it depends on your loss function, the cost to you of an error as a function
of its size. It is usual to choose the estimator that yields the smallest expected loss, which is found by
weighting the loss function by the probability density function. (If you are risk-averse, you may wish
to take the variance of the loss into account as well.)

A common example of a loss function, illustrated by the quadratic curve in Figure R.10, is the
square of the error. The expected value of this, known as the mean square error (MSE), has the simple
decomposition:

probability density
function

estimator B

/

estimator A

/

Figure R.9. Which estimator is to be preferred? Ais
unbiased but B has smaller variance
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loss

error (negative) error (positive)

Figure R.10. Loss function

MSE of estimator = Variance of estimator + Bias® (R.29)

To show this, suppose that you are using an estimator Z to estimate an unknown population
parameter 6. Let the expected value of Z be uz. This will be equal to 6 only if Z is an unbiased
estimator. In general there will be a bias, given by (uz— 6). The variance of Z is equal to E[(Z -
7)°]. The MSE of Z can be decomposed as follows:

E(Z-6)*1=El({Z -, } +{u, —6))°]
=E(Z-,)" +2Z -, )1, —0)+ (1, —6)°] (R.30)
= E(Z - ;) 1+ 2(, —0)E(Z — uy) + E[(1, —6)°]

The first term is the population variance of Z. The second term is O because
E(Z-p,)=EZ)+E(~lt,)= i, —; =0 (R31)

The expected value of the third term is (1, — 9)2 , the bias squared, since both 1z and 6 are constants.

Hence we have shown that the mean square error of the estimator is equal to the sum of its population
variance and the square of its bias.

In Figure R.9, estimator A has no bias component, but it has a much larger variance component
than B and therefore could be inferior by this criterion.

The MSE is often used to generalize the concept of efficiency to cover comparisons of biased as
well as unbiased estimators. However, in this text, comparisons of efficiency will mostly be confined
to unbiased estimators.

Exercises

R.15 Give examples of applications where you might (1) prefer an estimator of type A, (2) prefer one
of type B, in Figure R.9.

R.16 Draw a loss function for getting to an airport later (or earlier) than the official check-in time.

R.17 If you have two estimators of an unknown population parameter, is the one with the smaller
variance necessarily more efficient?
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The Effect of Increasing the Sample Size on the Accuracy of an Estimate

We shall continue to assume that we are investigating a random variable X with unknown mean u and

population variance ¢°, and that we are using X to estimate 1. How does the accuracy of X depend
on the number of observations, n?

Not surprisingly, the answer is that, as you increase n, the more accurate X is likely to be. In any
single experiment, a bigger sample will not necessarily yield a more accurate estimate than a smaller
one — the luck factor is always at work — but as a general tendency it should. Since the population
variance of X is given by o’/n, the bigger the sample, the smaller the variance and hence the more
tightly compressed is the probability density function of X .

This is illustrated in Figure R.11. We are assuming that X is normally distributed and that it has

mean 100 and standard deviation 50. If the sample size is 4, the standard deviation of X, 0/ \/; , 1s

equal to 50/ Ja =25 1f the sample size is 25, the standard deviation is 10. If it is 100, the standard

deviation is 5. Figure R.11 shows the corresponding probability density functions. That for n = 100 is
taller than the others in the vicinity of y, showing that the probability of it giving an accurate estimate
is higher. It is lower elsewhere.

The larger the sample size, the narrower and taller will be the probability density function of X .
If n becomes really large, the probability density function will be indistinguishable from a vertical line
located at X = u. For such a sample the random component of X becomes very small indeed, and so

X is bound to be very close to . This follows from the fact that the standard deviation of X,

G/ Jn , becomes very small as n becomes large.

In the limit, as n tends to infinity, 0/ Jn tends to 0 and X tends to U exactly. This may be

written mathematically

limX =pu (R.32)

n—yco

probability density
function

0.08 4

0.06 -

0.04 4

0.02 4

Figure R.11. Effect of increasing the sample size on the distribution of X
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An equivalent and more common way of expressing it is to use the term plim, where plim means
"probability limit" and emphasizes that the limit is being reached in a probabilistic sense:

plimX =y (R.33)

when, for any arbitrarily small numbers € and &, the probability of X being more than ¢ different
from p is less than 6, provided that the sample is large enough.

Exercise

R.18 In general, the variance of the distribution of an estimator decreases when the sample size is
increased. Is it correct to describe the estimator as becoming more efficient?

Consistency

In general, if the plim of an estimator is equal to the true value of the population characteristic, it is
said to be consistent. To put it another way, a consistent estimator is one that is bound to give an
accurate estimate of the population characteristic if the sample is large enough, regardless of the
actual observations in the sample. In most of the contexts considered in this text, an unbiased
estimator will also be a consistent one.

It sometimes happens that an estimator that is biased for small samples may be consistent (it is
even possible for an estimator that does not have a finite expected value for small samples to be
consistent). Figure R.12 illustrates how the probability distribution might look for different sample
sizes. The distribution is said to be asymptotically (meaning, in large samples) unbiased because it
becomes centered on the true value as the sample size becomes large. It is said to be consistent
because it finally collapses to a single point, the true value.

probability density
function

n=1000

true value

Figure R.12. Estimator that is consistent despite being biased in finite samples



REVIEW: RANDOM NUMBERS AND SAMPLING THEORY 21

An estimator is described as inconsistent either if its distribution fails to collapse as the sample
size becomes large or if the distribution collapses at a point other than the true value.

As we shall see later in this text, estimators of the type shown in Figure R.12 are quite important
in regression analysis. Sometimes it is impossible to find an estimator that is unbiased for small
samples. If you can find one that is at least consistent, that may be better than having no estimate at
all, especially if you are able to assess the direction of the bias in small samples. However, it should
be borne in mind that a consistent estimator could in principle perform worse (for example, have a
larger mean square error) than an inconsistent one in small samples, so you must be on your guard. In
the same way that you might prefer a biased estimator to an unbiased one if its variance is smaller,
you might prefer a consistent, but biased, estimator to an unbiased one if its variance is smaller, and
an inconsistent one to either if its variance is smaller still.

Two Useful Rules

Sometimes one has an estimator calculated as the ratio of two quantities that have random
components, for example

Z=XIY (R.34)

where X and Y are quantities that have been calculated from a sample. Usually it is difficult to analyze
the expected value of Z. In general it is not equal to E(X) divided by E(Y). If there is any finite
probability that ¥ may be equal to 0, the expected value of Z will not even be defined. However, if X
and Y tend to finite quantities plim X and plim Y in large samples, and plim Y is not equal to 0, the
limiting value of Z is given by

plim X

plimZ = (R.35)

plimY
Hence, even if we are not in a position to say anything definite about the small sample properties of Z,
we may be able to tell whether it is consistent.
For example, suppose that the population means of two random variables X and Y are iy and Ly,
respectively, and that both are subject to random influences, so that
X= Mx + ux (R36)

Y= My + Uy (R37)

where uy and uy are random components with 0 means. If we are trying to estimate, the ratio Ly /Ly

from sample data, the estimator Z = X /Y will be consistent, for

plim 7 = PAm X _ Ay (R.38)
plimY u,
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and we are able to say that Z will be an accurate estimator for large samples, even though we may not
be able to say anything about E(Z) for small samples.
There is a counterpart rule for the product of two random variables. Suppose

Z=XY (R.39)

Except in the special case where X and Y are distributed independently, it is not true that £(Z) is equal
to the product of E(X) and E(Y). However, even if X and Y are not distributed independently, it is true
that

plim Z = plim X Xplim Y, (R.40)

provided that plim X and plim Y exist.

Exercises

R.19 Is unbiasedness either a necessary or a sufficient condition for consistency?

R.20 A random variable X can take the values 1 and 2 with equal probability. For n equal to 2,
demonstrate that E(1/ X ) is not equal to 1/E( X).

R.21* Repeat Exercise 20 supposing that X takes the values 0 and 1 with equal probability.

Appendix R.1
2 Notation: A Review

Y notation provides a quick way of writing the sum of a series of similar terms. Anyone reading this
text ought to be familiar with it, but here is a brief review for those who need a reminder.

We will begin with an example. Suppose that the output of a sawmill, measured in tons, in month
i is g, with g; being the gross output in January, ¢, being the gross output in February, etc. Let output
for the year be denoted Z. Then

Z=qi+ @+ @3+ qa+qs+qet+qr+qgs+qo+qo+qu+qn.
In words, one might summarize this by saying that Z is the sum of the ¢; , beginning with g, and
ending with g, . Obviously there is no need to write down all 12 terms when defining Z. Sometimes
you will see it simplified to

Z:q1+...+q12,

it being understood that the missing terms are included in the summation.
2 notation allows you to write down this summary in a tidy symbolic form:
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12
Z= zqi
i=l

The expression to the right of the X sign tell us what kind of term is going to be summed, in this case,
terms of type ¢; . Underneath the X sign is written the subscript that is going to alter in the summation,
in this case i, and its starting point, in this case 1. Hence we know that the first term will be g,. The =
sign reinforces the fact that i should be set equal to 1 for the first term.

Above the X sign is written the last value of i, in this case 12, so we know that the last term is g,.
It is automatically understood that all the terms between ¢, and g, will also be included in the
summation, and so we have effectively rewritten the second definition of Z.

Suppose that the average price per ton of the output of the mill in month i is p;. The value of
output in month i will be p;g;, and the total value during the year will be V, where V is given by

V=qul + ...+ P12 qi.

We are now summing terms of type p;q; with the subscript i running from 1 to 12, and using X
notation this may be written as

12
V= z Pid;
i=1

If ¢; is the total cost of operating the mill in month i, profit in month i will be (p,g; — ¢;), and hence the
total profit over the year, P, will be given by

P=@igi—c) + ...+ (Pi2gi2 — c12),

which may be summarized as
12
PZZ(Piql‘ =)
i=1

Note that the profit expression could also have been written as total revenue minus total costs:

P=(piq +..+pigi)—(ci + ...+ ),

and this can be summarized in X notation as

12

12
Pzzpiqz' - Zci
i=1

i=1

If the price of output is constant during the year at level p, the expression for the value of annual
output can be simplified:
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V = pqi+ ... +pq=plq + ...+ q12)

12
= Pz q; -
i=1

Hence
12 12
Y. pai=p Y4,
i=1 i=1

If the output in each month is constant at level g, the expression for annual output can also be
simplified:

Z=qi+..+qu=q+..+q=12q.

Hence, in this case,

12

>.a:=12q

i=1
We have illustrated three rules, which can be stated formally:

Y Rule 1 (illustrated by the decomposition of profit into total revenue minus total cost)

i('xi + yi)zixi +i)’i
i1 i=1 i=1

Y Rule 2 (illustrated by the expression for V when the price was constant)

n n
z ax; = az x; (if aisaconstant).

i=1 i=1

Y Rule 3 (illustrated by the expression for Z when quantity was constant)

n
2 a=na (if ais a constant).
i=1

Often it is obvious from the context what are the initial and final values of the summation. In

n
such cases in is often simplified to le. . Furthermore, it is often equally obvious what subscript
i=1

is being changed, and the expression is simplified to just 2 X.
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Appendix R.2
Expected Value and Variance of a Continuous Random Variable

The definition of the expected value of a continuous random variable is very similar to that for a
discrete random variable:

E(X)= j xf (x)dx

where f(x) is the probability density function of X, with the integration being performed over the
interval for which f(x) is defined.

In both cases the different possible values of X are weighted by the probability attached to them.
In the case of the discrete random variable, the summation is done on a packet-by-packet basis over all
the possible values of X. In the continuous case, it is of course done on a continuous basis, integrating
replacing summation, and the probability density function f{x) replacing the packets of probability p;.
However, the principle is the same.

In the section on discrete random variables, it was shown how to calculate the expected value of
a function of X, g(X). You make a list of all the different values that g(X) can take, weight each of
them by the corresponding probability, and sum.

Discrete Continuous
E(X)=Yxp, E(X)= [ xf (x)dx
i=1
(Summation over all (Integration over the range
possible values) for which f(x) is defined)

The process is exactly the same for a continuous random variable, except that it is done on a
continuous basis, which means summation by integration instead of ¥ summation. In the case of the

discrete random variable, E[g(X)] is equal to 2 g(x;)p; with the summation taken over all possible
i=l

values of X. In the continuous case, it is defined by
Elg(X)]= [ g(x) f (0d ,

with the integration taken over the whole range for which f{x) is defined.

As in the case of discrete random variables, there is only one function in which we have an
interest, the population variance, defined as the expected value of (X — u)’, where p = E(X) is the
population mean. To calculate the variance, you have to sum (X — u)’, weighted by the appropriate
probability, over all the possible values of X. In the case of a continuous random variable, this means
that you have to evaluate
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o} = El(X —w)’1= [(x=w)” f(x)ax

It is instructive to compare this with equation (R.8), the parallel expression for a discrete random
variable:

oy =E[(X -w)’1= (x, 1)’ p;

i=1
As before, when you have evaluated the population variance, you can calculate the population
standard deviation, o, by taking its square root.
Appendix R.3
Proof that s? is an Unbiased Estimator of the Population Variance

It was asserted in Table R.5 that an unbiased estimator of o is given by s°, where

2 IS T2
s =— x,— X
H;(, )

We will begin the proof by rewriting (x;— X )* in a more complicated, but helpful, way:
(xxi— X ) =[(x; - w-(X — /Ut)]2 (the u terms cancel if you expand)

= (=) =205 — (X — )+ (X — ).

Hence

N =X) =D (x — )’ = 2AX = )Y (x; — ) +n(X — )’
i=1

i=1 i=1

The first term is the sum of the first terms of the previous equation using X notation. Similarly the
second term is the sum of the second terms of the previous equation using X notation and the fact that
(X — ) is a common factor. When we come to sum the third terms of the previous equation they are
all equal to (X — )>, so their sum is simply n( X — p1)*, with no need for X notation.

The second component may be rewritten —2n( X — u)z since

i(x,- —u)=ixi —np=nX —nu=n(X - ),

i=1 i=1
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and we have

Y5 - X0 =Y - 20X — )" (X - )’
i=1 i=1

=D (=)’ =n(X )’

i=1

Applying expectations to this equation, we have

E[Z(xi - )?)2] = E[Z(xi —,u)2:|—nE[()?—u)2]

i=1 i=1
= E[(x; =)’ 1+...+ E[(x, = 0)* 1 - nE[(X — p1)*]
=no’-noy

=no’-n(@*/n)=mn-o?

using the fact that the population variance of X is equal to 6°/n. This is proved in Section 1.7.

Hence

1 _ 1] _
E“Z)ZE[HZ“‘ ‘X)Z]ZEE[Z“" ‘X)z]

L=l i=1

1
=——(m-1)o’ =0’
n—1

Thus s> is an unbiased estimator of o°.

27



COVARIANCE, VARIANCE,
AND CORRELATION

This chapter introduces covariance and correlation, two concepts that will prepare the way for the
treatment of regression analysis to come. A second and equally important objective is to show how to
manipulate expressions involving sample variance and covariance. Several detailed examples are
provided to give you practice. They are used very extensively in future chapters and it is vital that
they become second nature to you. They simplify the mathematics and make the analysis much easier
to follow.

1.1 Sample Covariance

Sample covariance is a measure of association between two variables. The concept will be illustrated
with a simple example. Table 1.1 shows years of schooling, S, and hourly earnings in 1994, in dollars,
Y, for a subset of 20 respondents from the United States National Longitudinal Survey of Youth, the
data set that is used for many of the practical illustrations and exercises in this text. S is the highest
grade completed, in the case of those who did not go on to college, and 12 plus the number of years of
college completed, for those who did. Figure 1.1 shows the data plotted as a scatter diagram. You can
see that there is a weak positive association between the two variables.

TaBLE 1.1
Observation S Y Observation S Y
1 15 17.24 11 17 15.38
2 16 1500 | 12 12 12.70
3 1491 | 13 12 26.00
4 4.50 14 9 7.50
5 15 18.00 15 15 5.00
6 12 629 | 16 12 2163
7 12 19.23 17 16 12.10
8 18 18.69 | 18 12 5.55
9 12 721 i 19 12 7.50
10 20 4206 | 20 14 8.00

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 19.04.01.
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Figure 1.1. Hourly earnings and schooling, 20 NLSY respondents

The sample covariance, Cov(X, Y), is a statistic that enables you to summarize this association with a
single number. In general, given n observations on two variables X and Y, the sample covariance
between X and Y is given by

Cov(X,Y) =%[(X1 —X)Y,-Y) 4.+ (X, - X)¥,-Y)]
La B ~ (1.1)
==Y (X, - X)(¥,-Y)
nsiog

where, as usual, a bar over the symbol for a variable denotes its sample mean.

Note: In Section 1.4 we will also define the population covariance. To distinguish between the
two, we will use Cov(X, Y) to refer to the sample covariance and oyy to refer to the population
covariance between X and Y. This convention is parallel to the one we will use for variance: Var(X)

referring to the sample variance, ando ; referring to the population variance.

Further note: Some texts define sample covariance, and sample variance, dividing by n—1 instead
of n, for reasons that will be explained in Section 1.5.
The calculation of the sample covariance for S and Y is shown in Table 1.2. We start by

calculating the sample means for schooling and earnings, which we will denote S and ¥ . § is

13.250 and Y is 14.225. We then calculate the deviations of S and Y from these means for each
individual in the sample (fourth and fifth columns of the table). Next we calculate the product of the
deviations for each individual (sixth column). Finally we calculate the mean of these products,
15.294, and this is the sample covariance.

You will note that in this case the covariance is positive. This is as you would expect. A positive
association, as in this example, will be summarized by a positive sample covariance, and a negative
association by a negative one.
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Hourly earnings ($)

TABLE 1.2
Observation S Y S-5) Y-Y) (S-8S)¥Y-Y)
1 15 17.24 1.75 3.016 5.277
2 16 15.00 2.75 0.775 2.133
3 1491 -5.25 0.685 -3.599
4 6 4.5 -7.25 -9.725 70.503
5 15 18.00 1.75 3.776 6.607
6 12 6.29 -1.25 -7.935 9.918
7 12 19.23 -1.25 5.006 -6.257
8 18 18.69 4.75 4.466 21.211
9 12 7.21 -1.25 -7.015 8.768
10 20 42.06 6.75 27.836 187.890
11 17 15.38 3.75 1.156 4.333
12 12 12.70 -1.25 -1.525 1.906
13 12 26.00 -1.25 11.776 -14.719
14 9 7.50 -4.25 -6.725 28.579
15 15 5.00 1.75 -9.225 -16.143
16 12 21.63 -1.25 7.406 -9.257
17 16 12.10 2.75 -2.125 -5.842
18 12 5.55 -1.25 -8.675 10.843
19 12 7.50 -1.25 -6.725 8.406
20 14 8.00 0.75 -6.225 —4.668
Total 265 284.49 305.888
Average 13.250 14.225 15.294
45
40 1
35 1 A
30
25 :
20 - . .
15 4 . . .
10 1
. . . B
5 : .
0 T T T T T T T T
0 4 8 10 12 14 16 18 20
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Figure 1.2.
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It is worthwhile investigating the reason for this. Figure 1.2 is the same as Figure 1.1, but the
scatter of observations has been quartered by vertical and horizontal lines drawn through the points S
and Y , respectively. The intersection of these lines is therefore the point (S ,Y ), the point giving
mean schooling and mean hourly earnings for the sample. To use a physical analogy, this is the center
of gravity of the points representing the observations.

Any point lying in quadrant A is for an individual with above-average schooling and above-
average earnings. For such an observation, both (S — S)and (Y- Y ) are positive, and (S — SH)Y -
Y ) must therefore be positive, so the observation makes a positive contribution to the covariance
expression. Example: Individual 10, who majored in biology in college and then went to medical
school, has 20 years of schooling and her earnings are the equivalent of $42.06 per hour. (S — S ) is
6.75, (Y- Y ) is 27.84, and the product is 187.89.

Next consider quadrant B. Here the individuals have above-average schooling but below-average
earnings. (S — S) is positive, but (Y — Y) is negative, so (S — SYY - Y)is negative and the
contribution to the covariance is negative. Example: Individual 20 completed two years of four-year
college majoring in media studies, but then dropped out, and earns only $8.00 per hour working in the
office of an automobile repair shop.

In quadrant C, both schooling and earnings are below average, so (S — S ) and (Y — ¥ ) are both
negative, and (S — SYY-Y)is positive. Example: Individual 4, who was born in Mexico and had
only six years of schooling, is a manual worker in a market garden and has very low earnings.

Finally, individuals in quadrant D have above average earnings despite having below-average
schooling, so (S — S) is negative, (Y — Y) is positive, and (S — S)Y - Y ) makes a negative
contribution to the covariance. Example: Individual 3 has slightly above-average earnings as a
construction laborer, despite only completing elementary school.

Since the sample covariance is the average value of (S — S )Y - Y ) for the 20 observations, it
will be positive if positive contributions from quadrants A and C dominate and negative if the negative
ones from quadrants B and D dominate. In other words, the sample covariance will be positive if, as
in this example, the scatter is upward-sloping, and negative if the scatter is downward-sloping.

1.2 Some Basic Covariance Rules

There are some rules that follow in a perfectly straightforward way from the definition of covariance,
and since they are going to be used many times in future chapters it is worthwhile establishing them
immediately:

Covariance Rule 1 IfY=vV+W,Cov(X, Y) =Cov(X, V) + Cov(X, W)

Covariance Rule 2 If Y = bZ, where b is a constant and Z is a variable,
Cov(X, Y) = bCov(X, Z)

Covariance Rule 3 If Y = b, where b is a constant, Cov(X, Y) =0
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Proof of Covariance Rule 1

Since Y=V+W,Y,=V,+W,and Y =V +W . Hence

Cov(X, V)=~ 3 (X, - X)(¥, - 7)

noio

:%i(xi — XV, +W, 1~V + W)
i=1

3 X, = R, - T+, ) (1.2)
i=1

IS - 0w -7+ 1Y (x, - B, - )
nic =]

=Cov(X,V)+ Cov(X,W)

Proof of Covariance Rule 2

IfY=bZ, Y,=bZ and Y =bZ . Hence

1< — — 1 — _
Cov(XJ)—;;(X,- -X)(, —Y)—;;X,- - X)(bZ, —bZ)

. (1.3)
:22()(,. - X)Z, -Z)=bCov(X,Z)
noig
Proof of Covariance Rule 3
This is trivial. If Y=5b, Y =band Y;— Y =0 for all observations. Hence
Cov(X, 1) =23 (X, =X\, - 1) =2 3 (X, = X)(b - )
i i (1.4)

L3 x - %0 =0
iz

Further Developments

With these basic rules, you can simplify much more complicated covariance expressions. For
example, if a variable Y is equal to the sum of three variables U, V, and W,

Cov(X, Y) = Cov(X, [U+V+W]) = Cov(X, U)+ Cov(X, [V+ W) (1.5
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using Rule 1 and breaking up Y into two parts, U and V+W. Hence
Cov(X, Y) = Cov(X, U) + Cov(X, V) + Cov(X, W) (1.6)
using Rule 1 again.
Another example: If 'Y = by + b,Z, where b, and b, are constants and Z is a variable,
Cov(X, Y) = Cov(X, [b) + byZ))
Cov(X, by) + Cov(X, byZ) using Rule 1

0+ Cov(X, b,Z) using Rule 3
b,Cov(X, Z) using Rule 2 (L.7)

1.3 Alternative Expression for Sample Covariance

The sample covariance between X and Y has been defined as
1 ¥ = —
Cov(X,Y)==> (X, - X)(¥, -Y) (1.8)
noa
An alternative, and equivalent, expression is
Cov(X, Y) = [lZX,.Y,]—Y? (1.9)
noa

You may find this to be more convenient if you are unfortunate enough to have to calculate a
covariance by hand. In practice you will normally perform calculations of this kind using a statistical
package on a computer.

It is easy to prove that the two expressions are equivalent.

COV(X,Y)=lZn:(X,- -X)(¥, -Y)
n

i=1

13 S
==Y (X,Y, - X,Y - XY, + XV
) !

i=1
1 _ __
=— (XY, - XY - XY, + XY (1.10)
n
+...
+X,Y, -X,Y-XY, +XY)

Adding each column, and using the fact that 2 X, =nX and 2 Y, =nY,

i=1 i=1
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1] _Q _& __
Cov(X,Y)=—| ) XY, -Y ) X, =X ) Y, +nXY
Ly xy, —n)??—n)??ﬂa)??}
n|--
- (1.11)

Exercises

S |-

L i=1

S |~

ix,.y,. —n)?f:|
ixix]— Xy
L i=1

1.1 In a large bureaucracy the annual salary of each individual, Y, is determined by the formula

Y =10,000 + 500S + 200T

where S is the number of years of schooling of the individual and 7 is the length of time, in years,
of employment. X is the individual’s age. Calculate Cov(X, Y), Cov(X, S), and Cov(X, T) for the
sample of five individuals shown below and verify that

Cov(X, Y) = 500Cov(X, S) + 200Cov(X, T).

Explain analytically why this should be the case.

Age Years of Length of
Individual (vears) Schooling Service Salary
1 18 11 1 15,700
2 29 14 6 18,200
3 33 12 8 17,600
4 35 16 10 20,000
5 45 12 5 17,000

1.2 In a certain country the tax paid by a firm, 7, is determined by the rule

T=-12+02P-0.11

where P is profits and / is investment, the third term being the effect of an investment incentive. S
is sales. All variables are measured in $ million at annual rates. Calculate Cov(S, T), Cov(S, P),
and Cov(S, ) for the sample of four firms shown below and verify that

Cov(S, T) =0.2Cov(S, P) — 0.1Cov(S, I).

Explain analytically why this should be the case.
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Firm Sales Profits Investment Tax
1 100 20 10 1.8
2 50 9 4 0.2
3 80 12 4 0.8
4 70 15 6 1.2

1.4 Population Covariance

If X and Y are random variables, the expected value of the product of their deviations from their means
is defined to be the population covariance, Oxy:

Oxr = E[(X - tx)(Y — tiy)] (1.12)

where Ly and Uy are the population means of X and Y, respectively.

As you would expect, if the population covariance is unknown, the sample covariance will
provide an estimate of it, given a sample of observations. However, the estimate will be biased
downwards, for

E[Cov(X. 1)] = "=

Oy (1.13)

The reason is that the sample deviations are measured from the sample means of X and Y and tend to
underestimate the deviations from the true means. Obviously we can construct an unbiased estimator
by multiplying the sample estimate by n/(n—1). A proof of (1.13) will not be given here, but you could
construct one yourself using Appendix R.3 as a guide (first read Section 1.5). The rules for population
covariance are exactly the same as those for sample covariance, but the proofs will be omitted because
they require integral calculus.

If X and Y are independent, their population covariance is 0, since then

E[(X — ux)(Y — ty)] = EX - Uux)E(Y — iy)
=0x0 (1.14)

by virtue of the independence property noted in the Review and the fact that E(X) and E(Y) are equal

to Ly and Ly, respectively.

1.5 Sample Variance

In the Review the term variance was used to refer to the population variance. For purposes that will
become apparent in the discussion of regression analysis, it will be useful to introduce, with three
warnings, the notion of sample variance. For a sample of n observations, X, ..., X,, the sample
variance will be defined as the average squared deviation in the sample:
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Var(X):li(X,. -X)? (1.15)
nog

The three warnings are:
1. The sample variance, thus defined, is a biased estimator of the population variance. Appendix
R.3 demonstrates that sz, defined as

2 1 C v\2
5T =— X. - X
n_1;< ;= X)

is an unbiased estimator of &”. It follows that the expected value of Var(X) is [(n—1)/n] o and
that it is therefore biased downwards. Note that as n becomes large, (n—1)/n tends to 1, so the
bias becomes progressively attenuated. It can easily be shown that plim Var(X) is equal to &
and hence that it is an example of a consistent estimator that is biased for small samples.

2. Because s° is unbiased, some texts prefer to define it as the sample variance and either avoid
referring to Var(X) at all or find some other name for it. Unfortunately, there is no generally
agreed convention on this point. In each text, you must check the definition.

3. Because there is no agreed convention, there is no agreed notation, and a great many symbols
have been pressed into service. In this text the population variance of a variable X is

denoted 0')2( . If there is no ambiguity concerning the variable in question, the subscript may be

dropped. The sample variance will always be denoted Var(X).

Why does the sample variance underestimate the population variance? The reason is that it is
calculated as the average squared deviation from the sample mean rather than the true mean. Because
the sample mean is automatically in the center of the sample, the deviations from it tend to be smaller
than those from the population mean.

1.6 Variance Rules

There are some straightforward and very useful rules for variances, which are counterparts of those for
covariance discussed in Section 1.2. They apply equally to sample variance and population variance:

Variance Rule 1 IfY=V+ W, Var(Y) = Var(V) + Var(W) + 2Cov(V, W).
Variance Rule 2 If Y = bZ, where b is a constant, Var(Y) = b*Var(Z).
Variance Rule 3 If Y = b, where b is a constant, Var(Y) = 0.

Variance Rule 4 If Y=V + b, where b is a constant, Var(Y) = Var(V).

First, note that the variance of a variable X can be thought of as the covariance of X with itself:
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1 — 1 — —
Var(X)=—> (X, - X)* ==Y (X, - X)(X; - X) =Cov(X,X). (1.16)
noio noo
In view of this equivalence, we can make use of the covariance rules to establish the variance rules.

We are also able to obtain an alternative form for Var(X), making use of (1.9), the alternative form for
sample covariance:

Var(X):[lin]—)? (1.17)

Proof of Variance Rule 1
fY=v+w,

Var(Y)=Cov(Y,Y)=Cov(Y,[V +W])=Cov(Y,V)+ Cov(Y,W) using Covariance Rule 1
=Cov([V +W],V)+Cov([V +W],W)
=Cov(V,V)+ Cov(W,V)+ Cov(V,W) + Cov(W,W) using Covariance Rule 1 again
=Var(V)+ Var(W) + 2Cov(V,W) (1.18)

Proof of Variance Rule 2
If Y=>bZ, where b is a constant, using Covariance Rule 2 twice,

Var(Y)=Cov(Y,Y)=Cov(bZ,Y)=bCov(Z,Y)

) ) (1.19)
=bCov(Z,aZ)=b"Cov(Z,Z)=b"Var(Z)
Proof of Variance Rule 3
If Y = b, where b is a constant, using Covariance Rule 3,
Var(Y) = Cov(b, b) =0 (1.20)

This is trivial. If Y is a constant, its average value is the same constant and (Y —-Y) is O for all
observations. Hence Var(Y) is 0.

Proof of Variance Rule 4

If Y=V + b, where Vis a variable and b is a constant, using Variance Rule 1,
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Var(Y) = Var(V + b) = Var(V) + Var(b) + 2Cov(V, b)
= Var(V) (1.21)

Population variance obeys the same rules, but again the proofs are omitted because they require
integral calculus.
Exercises
1.3 Using the data in Exercise 1.1, calculate Var(Y), Var(S), Var(7T), and Cov(S, T) and verify that
Var(Y) = 250,000 Var(X) + 40,000 Var(T) + 200,000 Cov(S, T),

explaining analytically why this should be the case.

1.4* Using the data in Exercise 1.2, calculate Var(7), Var(P), Var(l) and Cov(P, I), and verify that
Var(T) = 0.04Var(P) + 0.01Var(J) — 0.04Cov(P, I),

explaining analytically why this should be the case.

1.7 Population Variance of the Sample Mean

If two variables X and Y are independent (and hence their population covariance oy, is 0), the

population variance of their sum is equal to the sum of their population variances:

2 2 2
(o] =0y +0, +20
X+Y )2( I; XY (122)
=0y +0y

This result can be extended to obtain the general rule that the population variance of the sum of
any number of mutually independent variables is equal to the sum of their variances, and one is able to
show that, if a random variable X has variance o”, the population variance of the sample mean, X ,
will be equal to o°/n, where n is the number of observations in the sample, provided that the
observations are generated independently.
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. . 1
0)2? = population variance of - (X, +...+X,)

|

Zn—za (X +.4X,,)
_ 1 2 2
_n_2[0"' +..4+0% | (1.23)

:%[02 +..+0%]
n

2
n n

As we have seen in the Review, the sample mean is the most efficient unbiased estimator of the
population mean provided that the observations are independently drawn from the same distribution.

1.8 The Correlation Coefficient

In this chapter a lot of attention has been given to covariance. This is because it is very convenient
mathematically, not because it is a particularly good measure of association. We shall discuss its
deficiencies in this respect in Section 1.9. A much more satisfactory measure is its near-relative, the
correlation coefficient.

Like variance and covariance, the correlation coefficient comes in two forms, population and
sample. The population correlation coefficient is traditionally denoted p, the Greek letter that is the
equivalent of “r”, and pronounced “row”, as in row a boat. For variables X and Y it is defined by

GXY

Pxy = )
OxOy

If X and Y are independent, pxy will be equal to O because the population covariance will be 0. If

(1.24)

there is a positive association between them, Oyy, and hence pxy, will be positive. If there is an exact
positive linear relationship, pxy will assume its maximum value of 1. Similarly, if there is a negative
relationship, pxy will be negative, with minimum value of —1.

The sample correlation coefficient, ryy, is defined by replacing the population covariance and
variances in (1.24) by their unbiased estimators. We have seen that these may be obtained by
multiplying the sample variances and covariances by n/(n—1). Hence

LlcOv(X,Y)

Fey = (1.25)
\/ anar(X) anar(Y)

n— n—

The factors n/(n—1) cancel, so we can conveniently define the sample correlation by
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ryy = CoviX. 1) (1.26)

A Var(X)Var(Y)

Like p, r has maximum value 1, which is attained when there is a perfect positive association
between the sample values of X and Y (when you plot the scatter diagram, the points lie exactly on an
upward-sloping straight line). Similarly, it has minimum value —1, attained when there is a perfect
negative association (the points lying exactly on a downward-sloping straight line). A value of 0
indicates that there is no association between the observations on X and Y in the sample. Of course the
fact that r = 0 does not necessarily imply that p = 0 or vice versa.

Hllustration

We will use the education and earnings example in Section 1.1 to illustrate the calculation of the
sample correlation coefficient. The data are given in Table 1.1 and they are plotted in Figure 1.1. We
have already calculated Cov(S, Y) in Table 1.2, equal to 15.294, so we now need only Var(S) and
Var(Y), calculated in Table 1.3.

TaBLE 1.3
Observation S Y S-5) (r-1) (S-S5 ) Y-Y»  (S-S)¥-Y)

1 15 17.24 175 3.016 3.063 9.093 5.277
2 16 15.00 275 0.775 7.563 0.601 2.133
3 14.91 525 0.685 27.563 0.470 ~3.599
4 45 725 9725 52.563 94.566 70.503
5 15 18.00 1.75 3.776 3.063 14.254 6.607
6 12 6.29 -125 ~7.935 1.563 62.956 9.918
7 12 19.23 ~1.25 5.006 1.563 25.055 ~6.257
8 18 18.69 475 4.466 22.563 19.941 21211
9 12 721 -125 ~7.015 1.563 49.203 8.768
10 20 42.06 6.75 27.836 45.563 774.815 187.890
11 17 15.38 3.75 1.156 14.063 1.335 4333
12 12 12.70 ~125 ~1.525 1.563 2.324 1.906
13 12 26.00 -125 11.776 1.563 138.662 ~14.719
14 9 7.50 425 ~6.725 18.063 45219 28.579
15 15 5.00 1.75 9225 3.063 85.091 ~16.143
16 12 21.63 -125 7.406 1.563 54.841 9257
17 16 12.10 275 2125 7.563 4.514 ~5.842
18 12 5.55 -125 -8.675 1.563 75.247 10.843
19 12 7.50 -1.25 ~6.725 1.563 45219 8.406
20 14 8.00 0.75 ~6.225 0.563 38.744 —4.668
Total 265  284.49 217.750 1,542.150 305.888

Average 13.250 14.225 10.888 77.108 15.294
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From the last two columns of Table 1.3, you can see that Var(S) is 10.888 and Var(Y) is 77.108.
Hence

_ 15.924 15924
J10.888x77.108  28.975

0.55 (1.27)

Tsy

Exercises

1.5 In the years following the Second World War, the economic growth of those countries that had
suffered the greatest destruction, Germany and Japan, was more rapid than that of most other
industrialized countries. Various hypotheses were offered to explain this. Nicholas Kaldor, a
Hungarian economist, argued that the countries that had suffered the worst devastation had had to
invest comprehensively with new plant and equipment. Because they were using up-to-date
technology, their marginal costs were lower than those of their competitors in export markets, and
they gained market share. Because they gained market share, they needed to increase their
productive capacity and this meant additional investment, further lowering their marginal costs
and increasing their market share. Meanwhile those countries that had suffered least, such as the
U.S. and the U.K., had less need to re-invest. As a consequence the same process worked in the
opposite direction. Their marginal costs were relatively high, so they lost market share and had
less need to increase capacity. As evidence for this hypothesis, Kaldor showed that there was a
high correlation between the output growth rate, x, and the productivity growth rate, p, in the
manufacturing sectors in the 12 countries listed in the table.

When a critic pointed out that it was inevitable that x and p would be highly correlated,
irrespective of the validity of this hypothesis, Kaldor proposed a variation on his hypothesis.
Economic growth was initially high in all countries for a few years after the war, but in some,
particularly the U.S. and the U.K., it was soon checked by a shortage of labor, and a negative
cycle took hold. In others, like Germany and Japan, where agriculture still accounted for a large
share of employment, the manufacturing sector could continue to grow by attracting workers
from the agricultural sector, and they would then have an advantage. A positive correlation
between the growth rate of employment, e, and that of productivity would be evidence in favor of
his hypothesis.

Annual Growth Rates (%)

Employment Productivity

Austria 2.0 4.2
Belgium 1.5 39
Canada 2.3 1.3
Denmark 2.5 3.2
France 1.9 3.8
Italy 4.4 4.2
Japan 5.8 7.8
Netherlands 1.9 4.1
Norway 0.5 4.4
West Germany 2.7 4.5
UK. 0.6 2.8

uU.S. 0.8 2.6
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The table reproduces his data set, which relates to the period 1953/1954 to 1963/1964
(annual exponential growth rates). Plot a scatter diagram and calculate the sample correlation
coefficient for e and p. [If you are not able to use a spreadsheet application for this purpose, you
are strongly advised to use equations (1.9) and (1.17) for the sample covariance and variance and
to keep a copy of your calculation, as this will save you time with another exercise in Chapter 2.].
Comment on your findings.

1.6 Suppose that the observations on two variables X and Y lie on a straight line

Y:bl +b2X

Demonstrate that Cov(X, Y) = b,Var(X) and that Var(Y) = b22 Var(X) , and hence that the sample

correlation coefficient is equal to 1 if the slope of the line is positive, —1 if it is negative.

1.7* Suppose that a variable Y is defined by the exact linear relationship
Y=b 1+ bzX

and suppose that a sample of observations has been obtained for X, Y, and a third variable, Z.
Show that the sample correlation coefficient for ¥ and Z must be the same as that for X and Z, if
b, is positive.

1.9 Why Covariance is Not a Good Measure of Association

The correlation coefficient is a much better measure of association than the covariance, the main
reason being that the covariance depends on the units in which the variables X and Y happen to be
measured, whereas the correlation coefficient does not. This will be demonstrated for the sample
concepts; the proof for the population concepts will be left as an exercise.

Returning to the schooling and earnings example, we will investigate what happens when hourly
earnings are measured in cents rather than dollars. The covariance will be affected, but the correlation
coefficient will not.

We will denote the revised earnings data by Y'. The data for S and Y’ are shown in Table 1.4. Of
course the data for Y’ are just the data for Y in Table 1.2, multiplied by 100. As a consequence, the
average value of Y’ in the sample is 100 times as large as the average value of Y. When we come to
calculate the earnings deviations (Y’ — Y"), these are 100 times those in Table 1.2 because (Y'— Y') =

(100Y’ = 100Y ) = 100(Y — Y ). Hence the products (S — S)(Y'— Y")are 100 times those in Table
1.2 and the sample covariance, 1529.4, is 100 times that obtained when hourly earnings were
measured in dollars. However, the correlation coefficient is unaffected. The correlation coefficient
for Sand Y'is

Cov(S,Y") 1529.4
Toyr = =

= = =0.55. (1.28)
JVar(S)Var(Y')  +/10.888x 771080
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TABLE 1.4
Observation S Y S-S) (-Y) (-SY (-Y')yY (S-S)y-v)
1 15 1724 1.75 301.6 3.063 90930 5277
2 16 1500 2.75 71.5 7.563 6010 2133
3 1491 -5.25 68.5  27.563 4700 -359.9
4 6 450 -7.25 9725 52563 945660 7050.3
5 15 1800 1.75 377.6 3.063 142540 660.7
6 12 629 -1.25 ~793.5 1.563 629560 991.8
7 12 1923 -1.25 500.6 1.563 250550 ~625.7
8 18 1869 4.75 4466 22563 199410 2121.1
9 12 721 -1.25 -701.5 1.563 492030 876.8
10 20 4206 6.75 2783.6 45563 7748150 18789.0
11 17 1538 3.75 1156 14.063 13350 4333
12 12 1270 -1.25 -152.5 1.563 23240 190.6
13 12 2600 -1.25 1177.6 1.563 1386620 ~1471.9
14 9 750 —4.25 6725 18.063 452190 2857.9
15 15 500 1.75 -922.5 3.063 850910 ~1614.3
16 12 2163 -1.25 740.6 1.563 548410 -925.7
17 16 1210 275 2125 7.563 45140 5842
18 12 555 -1.25 -867.5 1.563 752470 1084.3
19 12 750 -1.25 ~672.5 1.563 452190 840.6
20 14 800 0.75 ~622.5 0.563 387440 ~466.8
Total 265 28449 217.750 15421500 30588.8
Average 13.25( 14225 10.888 771080 1529.4

The numerator (the top half of the fraction) has been multiplied by 100, but so has the denominator
(the bottom half), since Var(Y") is 100*Var(¥). (Remember that, when you multiply a variable by a
constant, you multiply its variance by the constant squared.) The denominator is multiplied by 100,
rather than 100°, because Var(Y’) is under a square root.

Exercise

1.8 Demonstrate that, in general, the sample correlation coefficient is not affected by a change in
the unit of measurement of one of the variables.



SIMPLE REGRESSION
ANALYSIS

This chapter shows how a hypothetical linear relationship between two variables can be quantified
using appropriate data. The principle of least squares regression analysis is explained, and expressions
for the coefficients are derived.

Most students taking an introductory econometrics course will already have taken a basic calculus
course and should have no trouble following the derivations of the regression coefficients. Those who
have not should skip Section 2.3 and the proof in Section 2.5. They will then have to take the
expressions on trust, but they should still be able to understand in general terms how the expressions
have been derived.

2.1 The Simple Linear Model

The correlation coefficient may indicate that two variables are associated with one another, but it does
not give any idea of the kind of relationship involved. We will now take the investigation a step
further in those cases for which we are willing to hypothesize than one variable depends on another.

It must be stated immediately that one would not expect to find an exact relationship between any
two economic variables, unless it is true as a matter of definition. In textbook expositions of economic
theory, the usual way of dealing with this awkward fact is to write down the relationship as if it were
exact and to warn the reader that it is really only an approximation. In statistical analysis, however,
one generally acknowledges the fact that the relationship is not exact by explicitly including in it a
random factor known as the disturbance term.

We shall start with the simplest possible model:

Yi = Bi+ X+ u. (2.1)

Y;, the value of the dependent variable in observation i, has two components: (1) the nonrandom
component f3; + B,X;, X being described as the explanatory (or independent) variable, and the fixed
quantities 3; and 3, as the parameters of the equation, and (2) the disturbance term, u;.

Figure 2.1 illustrates how these two components combine to determine Y. X, X,, X3, and X4 are
four hypothetical values of the explanatory variable. If the relationship between Y and X were exact,
the corresponding values of Y would be represented by the points Q; — Q4 on the line. The disturbance
term causes the actual values of Y to be different. In the diagram, the disturbance term has been
assumed to be positive in the first and fourth observations and negative in the other two, with the
result that, if one plots the actual values of Y against the values of X, one obtains the points P, — P.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 20.04.01.
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Figure 2.1. True relationship between Y and X

It must be emphasized that in practice the P points are all one can see of Figure 2.1. The actual
values of B, and B, and hence the location of the Q points, are unknown, as are the values of the
disturbance term in the observations. The task of regression analysis is to obtain estimates of f3; and
B>, and hence an estimate of the location of the line, given the P points.

Why does the disturbance term exist? There are several reasons.

1. Omission of explanatory variables: The relationship between Y and X is almost certain to be a
simplification. In reality there will be other factors affecting Y that have been left out of (2.1),
and their influence will cause the points to lie off the line. It often happens that there are
variables that you would like to include in the regression equation but cannot because you are
unable to measure them. For example, later on in this chapter we will fit an earnings function
relating hourly earnings to years of schooling. We know very well that schooling is not the
only determinant of earnings and eventually we will improve the model by including other
variables, such as years of work experience. However, even the best-specified earnings
function accounts for at most half of the variation in earnings. Many other factors affect the
chances of obtaining a good job, like the unmeasurable attributes of an individual, and even
pure luck in the sense of the individual finding a job which is a good match for his or her
attributes. All of these other factors contribute to the disturbance term.

2. Aggregation of variables: In many cases the relationship is an attempt to summarize in
aggregate a number of microeconomic relationships. For example, the aggregate consumption
function is an attempt to summarize a set of individual expenditure decisions. Since the
individual relationships are likely to have different parameters, any attempt to relate aggregate
expenditure to aggregate income can only be an approximation. The discrepancy is attributed
to the disturbance term.

3. Model misspecification: The model may be misspecified in terms of its structure. Just to give
one of the many possible examples, if the relationship refers to time series data, the value of Y
may depend not on the actual value of X but on the value that had been anticipated in the
previous period. If the anticipated and actual values are closely related, there will appear to be
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a relationship between Y and X, but it will only be an approximation, and again the disturbance
term will pick up the discrepancy.

4. Functional misspecification: The functional relationship between Y and X may be misspecified
mathematically. For example, the true relationship may be nonlinear instead of linear. We will
consider the fitting of nonlinear relationships in Chapter 5. Obviously, one should try to avoid
this problem by using an appropriate mathematical specification, but even the most
sophisticated specification is likely to be only an approximation, and the discrepancy
contributes to the disturbance term.

5. Measurement error: If the measurement of one or more of the variables in the relationship is
subject to error, the observed values will not appear to conform to an exact relationship, and
the discrepancy contributes to the disturbance term.

The disturbance term is the collective outcome of all these factors. Obviously, if you were
concerned only with measuring the effect of X on Y, it would be much more convenient if the
disturbance term did not exist. Were it not for its presence, the P points in Figure 2.1 would coincide
with the Q points, you would know that every change in Y from observation to observation was due to
a change in X, and you would be able to calculate B; and B, exactly. However, in fact, part of each
change in Y is due to a change in u, and this makes life more difficult. For this reason, u is sometimes
described as noise.

2.2 Least Squares Regression

Suppose that you are given the four observations on X and Y represented in Figure 2.1 and you are
asked to obtain estimates of the values of B, and 3, in equation (2.1). As a rough approximation, you
could do this by plotting the four P points and drawing a line to fit them as best you can. This has been
done in Figure 2.2. The intersection of the line with the Y-axis provides an estimate of the intercept S,
which will be denoted b, and the slope provides an estimate of the slope coefficient f3,, which will be
denoted b,. The fitted line will be written

o P

oF

o P
o P °

b

Xi Xo X3 X4 X

Figure 2.2. Fitted line
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X1 Xo X3 X4 X

Figure 2.3. Fitted regression line showing residuals

Y. =b, +b,X, (2.2)

the caret mark over Y indicating that it is the fitted value of Y corresponding to X, not the actual value.
In Figure 2.3, the fitted points are represented by the points R — Ra.

One thing that should be accepted from the beginning is that you can never discover the true
values of B; and f3,, however much care you take in drawing the line. b; and b, are only estimates, and
they may be good or bad. Once in a while your estimates may be absolutely accurate, but this can only
be by coincidence, and even then you will have no way of knowing that you have hit the target
exactly.

This remains the case even when you use more sophisticated techniques. Drawing a regression
line by eye is all very well, but it leaves a lot to subjective judgment. Furthermore, as will become
obvious, it is not even possible when you have a variable Y depending on two or more explanatory
variables instead of only one. The question arises, is there a way of calculating good estimates of f3;
and f3, algebraically?

The first step is to define what is known as a residual for each observation. This is the difference
between the actual value of Y in any observation and the fitted value given by the regression line, that
is, the vertical distance between P; and R; in observation i. It will be denoted e;:

e, =Y, Y, (2.3)

1

The residuals for the four observations are shown in Figure 2.3. Substituting (2.2) into (2.3), we
obtain

e = Y,’ — bl — bin (24)

and hence the residual in each observation depends on our choice of b, and b,. Obviously, we wish to
fit the regression line, that is, choose b; and b,, in such a way as to make the residuals as small as
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possible. Equally obviously, a line that fits some observations well will fit others badly and vice versa.
We need to devise a criterion of fit that takes account of the size of all the residuals simultaneously.

There are a number of possible criteria, some of which work better than others. It is useless
minimizing the sum of the residuals, for example. The sum will automatically be equal to O if you
make b, equal to ¥ and b, equal to 0, obtaining the horizontal line Y = Y . The positive residuals will
then exactly balance the negative ones but, other than this, the line will not fit the observations.

One way of overcoming the problem is to minimize RSS, the sum of the squares of the residuals.
For Figure 2.3,

RSS=el +e; +e; +e; (2.5)

The smaller one can make RSS, the better is the fit, according to this criterion. If one could reduce
RSS to 0, one would have a perfect fit, for this would imply that all the residuals are equal to 0. The
line would go through all the points, but of course in general the disturbance term makes this
impossible.

There are other quite reasonable solutions, but the least squares criterion yields estimates of b,
and b, that are unbiased and the most efficient of their type, provided that certain conditions are
satisfied. For this reason, the least squares technique is far and away the most popular in
uncomplicated applications of regression analysis. The form used here is usually referred to as
ordinary least squares and abbreviated OLS. Variants designed to cope with particular problems will
be discussed later in the text.

2.3 Least Squares Regression: Two Examples

Example 1

First, a very simple example indeed, with only two observations, just to show the mechanics working.
Y is observed to be equal to 3 when X is equal to 1; Y is equal to 5 when X is equal to 2, as shown in
Figure 2.4.

Figure 2.4. Two-observation example
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TABLE 2.1
X Y Y e
1 3 by + b, 3-b;-b,
2 5 by +2b, 5-b;-2b,
We shall assume that the true model is
Y= it BoXi + u; (2.6)

and we shall estimate the coefficients b, and b, of the equation
Y, =b, +b,X,. 2.7)

Obviously, when there are only two observations, we can obtain a perfect fit by drawing the regression
line through the two points, but we shall pretend that we have not realized this. Instead we shall arrive
at this conclusion by using the regression technique.

When X is equal to 1, Y is equal to (by + b,), according to the regression line. When X is equal to
2, Y is equal to (b; + 2b;). Therefore, we can set up Table 2.1. So the residual for the first
observation, e;, which is given by (¥} — fl ), is equal to (3 — b; — b,), and e, given by (Y, — 1?2 ), is
equal to (5 — by — 2b;). Hence

RSS=(3—b, —b,)* +(5—b, —2b,)*
= 94 b’ + b — 6b — 6b, +2bb,
+25+ bl +4b; —10b, — 20b, + 4b,b,
=34+ 2b} +5b; —16b, —26b, + 6b,b,

2.8)

Now we want to choose b; and b, to minimize RSS. To do this, we use the calculus and find the
values of b, and b, that satisfy

JRSS _ and JRSS ~0 2.9)
ob, ob,
Taking partial differentials,
O—Rﬁ=4bl +6b, —16 (2.10)
ob,
and
IRSS =10b, + 6b, — 26 (2.11)

and so we have
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2b1+3b,-8 =0 (2.12)

and
3b1 +5b,-13 = 0 (2.13)

Solving these two equations, we obtain b, = 1 and b, = 2, and hence the regression equation
Y, =1+2X, (2.14)

Just to check that we have come to the right conclusion, we shall calculate the residuals:

3-b1-b,=3-1-2=0 (2.15)

€1

() 5—b1—2b2:5—1—420 (216)
Thus both the residuals are 0, implying that the line passes exactly through both points, which of
course we knew from the beginning.

Example 2

We shall take the example in the previous section and add a third observation: Y is equal to 6 when X
is equal to 3. The three observations, shown in Figure 2.5, do not lie on a straight line, so it is
impossible to obtain a perfect fit. We will use least squares regression analysis to calculate the
position of the line.

We start with the standard equation

Y, =b, +b,X,. (2.17)

For values of X equal to 1, 2, and 3, this gives fitted values of Y equal to (b, + by), (b1 + 2b,), and
(b1 + 3by), respectively, and one has Table 2.2.

Figure 2.5. Three-observation example
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TABLE 2.2
X Y Y e
1 3 by + b, 3-b-b,
2 5 by +2b, 5-b-2b,
3 6 by +3b, 6 — by —3b,

Hence

RSS=(3—=b, —b,)* +(5—b, —2b,)* +(6—b, —3b,)’

= 94+ b’+ b}— 6b — 6b,+ 2bb,
+25+ b’ + 4b; —10b, —20b, + 4b,b,
+36+ b’ + 9b; — 12b, —36b, + 6b,b,
=70+ 3b] +14b; —28b, —62b, +12b,b,

RSS ~0 and ORSS

b, b,

The first-order conditions =0 give us

6b1+12b,-28 = 0

and

126, + 28b,-62 = 0

(2.18)

(2.19)

(2.20)

Solving these two equations, one obtains b; = 1.67 and b, = 1.50. The regression equation is therefore

Y, =1.67+1.50X,

The three points and the regression line are shown in Figure 2.6.

Figure 2.6. Three-observation example with regression line

2.21)
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2.4 Least Squares Regression with One Explanatory Variable

We shall now consider the general case where there are n observations on two variables X and Y and,
supposing Y to depend on X, we will fit the equation

Y, =b, +b,X,. (2.22)

The fitted value of the dependent variable in observation i, ﬁ., will be (b + b,X;), and the residual e;

will be (Y; — by — b,X;). We wish to choose b, and b, so as to minimize the residual sum of the squares,
RSS, given by

RSS=ef +..+e; =) e (2.23)

i=1

We will find that RSS is minimized when

- Cov(X,Y) (224)
Var(X)
and
b =Y —b,X (2.25)

The derivation of the expressions for b; and b, will follow the same procedure as the derivation in
the two preceding examples, and you can compare the general version with the examples at each step.
We will begin by expressing the square of the residual in observation i in terms of b,, b,, and the data
on X and Y:

ef =V, =¥)' =(¥, =b = b,X,)’

sy (2.26)
=Y +b; +by; X[ =2bY, —=2b, XY, +2bb, X,

Summing over all the n observations, we can write RSS as

RSS = (Y, =b, —b,X,)* +..+ (Y, —b, —b,X,)*

Y +b] +by X[ —2bY, —2b,X Y, +2bb, X,

+ ... (2.27)
+ Y] +b] +b; X} -2bY, —2b,X Y, +2b,b, X ,

= ﬁyf +nb} +b§ixf —2bliy,. —2b2ixin +2blbzzn:Xl.
i=l1 i=1 i=l1 i=1 i=l1

Note that RSS is effectively a quadratic expression in b; and b,, with numerical coefficients
determined by the data on X and Y in the sample. We can influence the size of RSS only through our
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choice of b, and b,. The data on X and Y, which determine the locations of the observations in the
scatter diagram, are fixed once we have taken the sample. The equation is the generalized version of
equations (2.8) and (2.18) in the two examples.

The first order conditions for a minimum, IRSS =0 and IRSS =0, yield the following
ob, ob,
equations:
2nb, —2) Y, +2b, Y X, =0 (2.28)
i=l1 i=1
20, Y X7 =2) XY, +2b, Y X, =0 (2.29)
i=1 i=1 i=1

These equations are known as the normal equations for the regression coefficients and are the
generalized versions of (2.12) and (2.13) in the first example, and (2.19) and (2.20) in the second.

Equation (2.28) allows us to write b; in terms of Y, X, and the as yet unknown b,. Noting that
— 1 = 1
X=—)» X, and Y=— ) Y., (2.28) may be rewritten
; Z , . 2 > (2.28) may
2nb, —2nY +2b,nX =0 (2.30)

and hence

b =Y -b,X. (2.31)

Substituting for b; in (2.29), and again noting that Z X, = nX , we obtain

i=l1

20, Y X7 =2) XY, +2(Y —b,X)nX =0 (2.32)

i=1 i=1

Separating the terms involving b, and not involving b, on opposite sides of the equation, we have

2b, HZ X; )— nX 2} =2) XY, - 2nXY (2.33)
i=1

i=1

Dividing both sides by 2n,

ferpobesgoe o
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Using the alternative expressions for sample variance and covariance, this may be rewritten

b,Var(X) = Cov(X,Y) (2.35)
and so
_ COV(X,Y) (236)
Var(X)

Having found b, from (2.36), you find b, from (2.31). Those who know about the second order
conditions will have no difficulty confirming that we have minimized RSS.

In the second numerical example in Section 2.3, Cov(X, Y) is equal to 1.000, Var(X) to 0.667, Y
to 4.667, X to 2.000, so

b, = 1.000/0.667 = 1.50 (2.37)
and

b, =Y —b,X =4.667-1.50x2.000 = 1.667, (2.38)

which confirms the original calculation.

Alternative Expressions for b,

From the definitions of Cov(X, Y) and Var(X) one can obtain alternative expressions for b, in X
notation:

1 n _ _ n _ _
X =X -Y) Y (X, - X)), -Y)
s — COV(X’Y) — n i=1 — i=1 (2.39)

Var(X) lzn“(xi_i)z zn“(Xi_)?)z
noo i=1

One may obtain further variations using the alternative expressions for Cov(X, Y) and Var(X) provided
by equations (1.8) and (1.16):

1 n _ n o
=N X,y - Xy XY, —nXY
2 2
b, = - (2.40)

noio i=1
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2.5 Two Decompositions of the Dependent Variable

In the preceding pages we have encountered two ways of decomposing the value of the dependent
variable in a regression model. They are going to be used throughout the text, so it is important that
they be understood properly and that they be kept apart conceptually.

The first decomposition relates to the process by which the values of Y are generated:

Y,' = ﬁl + ﬁzX,' + u;. (241)

In observation i, Y; is generated as the sum of two components, the nonstochastic component,
Bi + B.X;, and the disturbance term u;. This decomposition is purely theoretical. We will use it in the
analysis of the properties of the regression estimators. It is illustrated in Figure 2.7a, where QT is the
nonstochastic component of Y and PQ is the disturbance term

The other decomposition relates to the regression line:

Y. =Y +e,
PshiTe . (2.42)
=b +b,X,; +e,
. Y=ﬁ1+ﬁzx
Y=b+bX
A v T
Xi X

Figure 2.7a. Decomposition of Y into nonstochastic component and disturbance term

Y=p3+pB.X
Y=b+b,X

Bfﬁﬁ

Xi X

Figure 2.7b. Decomposition of Y into fitted value and residual
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Once we have chosen the values of b, and b,, each value of Y is split into the fitted value, ﬁ., and the

residual, e;. This decomposition is operational, but it is to some extent arbitrary because it depends on
our criterion for determining b; and b, and it will inevitably be affected by the particular values taken
by the disturbance term in the observations in the sample. It is illustrated in Figure 2.7b, where RT is
the fitted value and PR is the residual.

2.6 Interpretation of a Regression Equation

There are two stages in the interpretation of a regression equation. The first is to turn the equation into
words so that it can be understood by a noneconometrician. The second is to decide whether this
literal interpretation should be taken at face value or whether the relationship should be investigated
further.

Both stages are important. We will leave the second until later and concentrate for the time being
on the first. It will be illustrated with an earnings function, hourly earnings in 1992, EARNINGS,
measured in dollars, being regressed on schooling, S, measured as highest grade completed, for the
570 respondents in EAEF Data Set 21. The Stata output for the regression is shown below. The
scatter diagram and regression line are shown in Figure 2.8.

. reg EARNINGS S

Source | Ss at MS Number of obs = 570
————————— e F( 1, ©568) = 65.64
Model | 3977.38016 1 3977.38016 Prob > F = 0.0000
Residual | 34419.6569 568 60.5979875 R-squared = 0.1036
————————— e Adj R-squared = 0.1020
Total | 38397.0371 569 67.4816117 Root MSE = 7.7845
EARNINGS | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ o
S | 1.073055 .1324501 8.102 0.000 .8129028 1.333206

cons | -1.391004 1.820305 -0.764 0.445 -4.966354 2.184347

For the time being, ignore everything except the column headed “coef.” in the bottom half of the
table. This gives the estimates of the coefficient of S and the constant, and thus the following fitted
equation:

EARNINGS =-1.39 + 1.07S. (2.43)

Interpreting it literally, the slope coefficient indicates that, as § increases by one unit (of S§),
EARNINGS increases by 1.07 units (of EARNINGS). Since S is measured in years, and EARNINGS is
measured in dollars per hour, the coefficient of S implies that hourly earnings increase by $1.07 for
every extra year of schooling.
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Figure 2.8. A simple earnings function

What about the constant term? Strictly speaking, it indicates the predicted level of EARNINGS
when S is 0. Sometimes the constant will have a clear meaning, but sometimes not. If the sample
values of the explanatory variable are a long way from 0, extrapolating the regression line back to 0
may be dangerous. Even if the regression line gives a good fit for the sample of observations, there is
no guarantee that it will continue to do so when extrapolated to the left or to the right.

In this case a literal interpretation of the constant would lead to the nonsensical conclusion that an
individual with no schooling would have hourly earnings of —$1.39. In this data set, no individual had
less than six years of schooling and only three failed to complete elementary school, so it is not
surprising that extrapolation to 0 leads to trouble.

Interpretation of a Linear Regression Equation

This is a foolproof way of interpreting the coefficients of a linear regression
Y, =b +b,X,

when Y and X are variables with straightforward natural units (not logarithms or other functions).
The first step is to say that a one-unit increase in X (measured in units of X) will cause a b,
unit increase in Y (measured in units of Y). The second step is to check to see what the units of X
and Y actually are, and to replace the word "unit" with the actual unit of measurement. The third
step is to see whether the result could be expressed in a better way, without altering its substance.
The constant, b, gives the predicted value of Y (in units of Y) for X equal to 0. It may or may
not have a plausible meaning, depending on the context.
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It is important to keep three things in mind when interpreting a regression equation. First, b, is
only an estimate of 3; and b, is only an estimate of [3,, so the interpretation is really only an estimate.
Second, the regression equation refers only to the general tendency for the sample. Any individual
case will be further affected by the random factor. Third, the interpretation is conditional on the
equation being correctly specified.

In fact, this is actually a naive specification of an earnings function. We will reconsider it several
times in later chapters. You should be undertaking parallel experiments using one of the other EAEF
data sets on the website.

Having fitted a regression, it is natural to ask whether we have any means of telling how accurate
are our estimates. This very important issue will be discussed in the next chapter.

Exercises

Note: Some of the exercises in this and later chapters require you to fit regressions using one of the
EAEF data sets on the website (http://econ.lse.ac.uk/ie/). You will need to download the EAEF
regression exercises manual and one of the 20 data sets.

2.1* The table below shows the average rates of growth of GDP, g, and employment, e, for 25
OECD countries for the period 1988-1997. The regression output shows the result of
regressing e on g. Provide an interpretation of the coefficients.

Average Rates of Employment Growth and GDP Growth, 1988-1997

employment ~ GDP employment ~ GDP
Australia 1.68 3.04 Korea 2.57 7.73
Austria 0.65 2.55 Luxembourg 3.02 5.64
Belgium 0.34 2.16 Netherlands 1.88 2.86
Canada 1.17 2.03 New Zealand 0.91 2.01
Denmark 0.02 2.02 Norway 0.36 2.98
Finland -1.06 1.78 Portugal 0.33 2.79
France 0.28 2.08 Spain 0.89 2.60
Germany 0.08 2.71 Sweden -0.94 1.17
Greece 0.87 2.08 Switzerland 0.79 1.15
Iceland -0.13 1.54 Turkey 2.02 4.18
Ireland 2.16 6.40 United Kingdom 0.66 1.97
Italy -0.30 1.68 United States 1.53 2.46
Japan 1.06 2.81
reg e g
Source | SS at MS Number of obs = 25
————————— B e F( 1, 23) =  33.22
Model | 14.2762167 1 14.2762167 Prob > F = 0.0000
Residual | 9.88359869 23 .429721682 R-squared = 0.5909
————————— o Adj R-squared = 0.5731
Total | 24.1598154 24 1.00665898 Root MSE = .65553
e | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o
g | .4846863 .0840907 5.764 0.000 .3107315 .6586411
cons | -.5208643 .2707298 -1.924 0.067 -1.080912 .039183
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2.2

2.3

2.4

2.5%

2.6

2.7"

Calculate by hand a regression of the data for p on the data for ¢ in Exercise 1.3, first using all
12 observations, then excluding the observation for Japan, and provide an economic
interpretation. (Note: You do not need to calculate the regression coefficients from scratch,
since you have already performed most of the arithmetical calculations in Exercise 1.3)

Fit an educational attainment function parallel to that in Exercise 2.1, using your EAEF data set,
and give an interpretation of the coefficients.

Fit an earnings function parallel to that discussed in Section 2.6, using your EAEF data set, and
give an interpretation of the coefficients.

The output below shows the result of regressing the weight of the respondent in 1985, measured
in pounds, against his or her height, measured in inches, using EAEF Data Set 21. Provide an
interpretation of the coefficients.

. reg WEIGHT85 HEIGHT

Source | Ss at MS Number of obs = 550
————————— e F( 1, 548) = 343.00
Model | 245463.095 1 245463.095 Prob > F = 0.0000
Residual | 392166.897 548 715.633025 R-squared = 0.3850
————————— e Adj R-squared = 0.3838
Total | 637629.993 549 1161.43897 Root MSE = 26.751
WEIGHTS85 | Coef std. Err t P>|t] [95% Conf. Intervall
_________ o
HEIGHT | 5.399304 .2915345 18.520 0.000 4.826643 5.971966
cons | -210.1883 19.85925 -10.584 0.000 -249.1979 -171.1788

Two individuals fit earnings functions relating EARNINGS to S as defined in Section 2.6, using
EAEF Data Set 21. The first individual does it correctly and obtains the result found in Section
2.6:

EARNINGS =—-1.39+1.07S

The second individual makes a mistake and regresses S on EARNINGS, obtaining the following
result:

S =12.255+0.097 EARNINGS

From this result the second individual derives

EARNINGS =-126.95+10.36S

Explain why this equation is different from that fitted by the first individual.

Derive, with a proof, the coefficients that would have been obtained in Exercise 2.5 if weight
and height had been measured in metric units. (Note: one pound is 454 grams, and one inch is
2.54 cm.)



SIMPLE REGRESSION ANALYSIS 17

2.8*

2.9*

2.10*

2.11

A researcher has data on the aggregate expenditure on services, Y, and aggregate disposable
personal income, X, both measured in $ billion at constant prices, for each of the U.S. states and
fits the equation

Y=+ BXi + u

The researcher initially fits the equation using OLS regression analysis. However, suspecting
that tax evasion causes both Y and X to be substantially underestimated, the researcher adopts
two alternative methods of compensating for the under-reporting:

1. The researcher adds $90 billion to the data for Y in each state and $200 billion to the data for
X.
2. The researcher increases the figures for both Y and X in each state by 10 percent.

Evaluate the impact of the adjustments on the regression results.

A researcher has international cross-section data on aggregate wages, W, aggregate profits, P,
and aggregate income, Y, for a sample of n countries. By definition,

Yl' = VV, + P,‘
The regressions
W, =a, +a,Y,
P =b, +byY,

are fitted using OLS regression analysis. Show that the regression coefficients will
automatically satisfy the following equations:

a2+b2:1
a1+b1:0

Explain intuitively why this should be so.

Derive from first principles the least squares estimator of 3, in the model
Y; = BoX; + u;
Derive from first principles the least squares estimator of B, in the even more primitive model
Yi= P +u

(In other words, Y consists simply of a constant plus a disturbance term. First define RSS and
then differentiate).
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2.7 Goodness of Fit: R?

The aim of regression analysis is to explain the behavior of the dependent variable Y. In any given
sample, Y is relatively low in some observations and relatively high in others. We want to know why.
The variations in Y in any sample can be summarized by the sample variance, Var(Y). We should like to

be able to account for the size of this variance.

Three Useful Results Relating to OLS Regressions
1) e=0,2)Y=Y,@3) Cov(Y,e)=0.

Proof of (1)
e, =Y, ~Y, =Y, —b —b, X,
SO
Y=Y, —nb—b Yy X,
i=1 i=1 i=1
Dividing by n,
e=Y -b, —b,X
=Y - (Y -b,X)-b,X =0
Proof of (2)
e =Y,-¥,
SO
e, =) Y — Az
i=1 i=1 i=1
Dividing by n,
e=Y-Y

But e =0, so Y=Y.

Proof of (3)

COV(Y, e)=Cov([b, +b,X],e)=Cov(b,,e)+Cov(b,X,e)
=b,Cov(X,e)=b,Cov(X,[Y —b, —b,X])
=b,[Cov(X,Y)—Cov(X,b,) —b,Var(X)]
=b,[Cov(X,Y)—b,Var(X)]

Cov(X,Y)

=b, [COV(X, Y)- Var(x)

Var(X):| =0
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A

We have seen that we can split the value of Y; in each observation into two components, Y; and e;,

after running a regression.
Y=Y +e, (2.44)
We can use this to decompose the variance of Y:

Var(Y) = Var(f +e)

R R (2.45)
=Var(Y) + Var(e) + 2Cov(Y,e)
Now it so happens the Cov( Y , €) must be equal to O (see the box). Hence we obtain
Var(Y) = Var(Y) + Var(e) (2.46)

This means that we can decompose the variance of Y into two parts, Var( Y), the part "explained" by the
regression line, and Var(e), the "unexplained" part. [Nofe: The words explained and unexplained have
been put in quotation marks because the explanation may in fact be false. Y might really depend on some
other variable Z, and X might be acting as a proxy for Z (more about this later). It would be safer to use
the expression apparently explained instead of explained.]

In view of (2.46), Var(Y )/Var(Y) is the proportion of the variance explained by the regression line.
This proportion is known as the coefficient of determination or, more usually, R*:

,  Var(Y)

~“Narr) (2.47)

The maximum value of R* is 1. This occurs when the regression line fits the observations exactly, so that
Yi = Y;in all observations and all the residuals are 0. Then Var(f ) = Var(Y), Var(e) is 0, and one has a

perfect fit. If there is no apparent relationship between the values of ¥ and X in the sample, R” will be
close to 0.
Often it is convenient to decompose the variance as "sums of squares”. From (2.46) one has

1 n _2 1 n N 72 1 n _2
— Y -Y) =— Y -Y) +— e. —e 2.48
nZ( . —Y) HZ( . —Y) n,;( ,—e) (2.48)

and so

n n

Z(Y,-—Y)2=Z(ﬁ—l7)2+ie,-z (2.49)
i=1

i=1 i=1

multiplying through by » and using e =0 and Y =Y (see the box). Thus

1SS = ESS +RSS (2.50)
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where 7SS, the total sum of squares, is given by the left side of the equation and ESS, the explained
sum of squares, and RSS, the residual sum of squares, are the two terms on the right side.

Other things being equal, one would like R* to be as high as possible. In particular, we would like
the coefficients b; and b, to be chosen in such a way as to maximize R>. Does this conflict with our
criterion that b; and b, should be chosen to minimize the sum of the squares of the residuals? No, they are
easily shown to be equivalent criteria. In view of (2.46) we can rewrite R” as

R? =1 Yar© 2.51)
Var(Y)
Thus
1 n
;Zef 1 rss
R*=1-—F__ =11 (2.52)

C Var(Y)  Var(Y)

and so the values of b and b, that minimize the residual sum of squares automatically maximize R

Alternative Interpretation of R

It should be intuitively obvious that, the better is the fit achieved by the regression equation, the higher
should be the correlation coefficient for the actual and predicted values of Y. We will show that R” is in
fact equal to the square of this correlation coefficient, which we will denote r, ;

Cov(Y,Y) Cov([Y +e],Y)
vy = i ~
JVar(¥)Var(¥)  Var(Y)Var(¥)
_ Cov(Y,Y)+Cov(e,Y)  Var(Y)

e?) - _ (2.53)
JVar(¥)Var(¥)  y/Var(Y)Var(?)

_ w/Var(I?)Var(Y) _ Var(f) =\/R_2
\J Var(Y)Var(Y) Var(Y)

Note that the proof makes use of the fact that Cov(e, Y ) =0 (see the box).

Example of How R? is Calculated
R’ is always calculated by the computer as part of the regression output, so this example is for illustration
only. We shall use the primitive three-observation example described in Section 2.3, where the regression

line

Y, = 1.6667 + 1.5000X; (2.54)



SIMPLE REGRESSION ANALYSIS 21

TABLE 2.3
Observation X Y Y e Y-Y v-¥ (Y—ff (?—f)z &
1 1 3 3.1667 -0.1667 -1.6667 -1.5 2.7778 2.25 0.0278
2 5 4.6667 0.3333 0.3333 0.0 0.1111 0.00 0.1111
3 3 6 6.1667 -0.1667 1.3333 15 1.7778 225 0.0278
Total 6 14 14 4.6667 4.50 0.1667
Average 2 4.6667 4.6667 1.5556 1.50 0.0556

was fitted to the observations on X and Y in Table 2.3. The table also shows Y, and e; for each

A

observation, calculated from (2.52), and all the other data needed to calculate Var(Y), Var( Y ) and Var(e).
(Note that ¢ must be 0, so Var(e) is lZeiz )
noi
From Table 2.3, you can see that Var(Y) = 1.5556, Var( Y ) =1.5000, and Var(e) = 0.0556. Note that

Var(Y) = Var(f ) + Var(e), as it must. From these figures, we can calculate R’ using either (2.47) or
(2.51):

R Var(¥) _1.5000 _ 0.96 (2.55)
Var(Y) 1.5556
2 4 Var(e) - 0.0556
Var(Y) 1.5556

0.96 (2.56)

Exercises

2.12 Using the data in Table 2.3, calculate the correlation between Y and Y and verify that its square
is equal to the value of R* .

2.13 What was the value of R” in the educational attainment regression fitted by you in Exercise 2.3?
Comment on it.

2.14 What was the value of R” in the earnings function fitted by you in Exercise 2.4? Comment on it.

2.15* The output below shows the result of regressing weight in 1994 on height, using FAEF Data
Set 21. In 1994 the respondents were aged 29-36. Explain why R” is lower than in the
regression reported in Exercise 2.5.

. reg WEIGHT94 HEIGHT

Source | Ss at MS Number of obs = 545
————————— e F( 1, 543) = 247.48
Model | 268361.40 1 268361.40 Prob > F = 0.0000
Residual | 588805.041 543 1084.35551 R-squared = 0.3131
————————— e Adj R-squared = 0.3118
Total | 857166 .44 544 1575.6736 Root MSE = 32.93
WEIGHT94 | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ e
HEIGHT | 5.659775 .35977 15.732 0.000 4.953064 6.366487
cons | -212.8358 24.51422 -8.682 0.000 -260.9901 -164.6815



PROPERTIES OF THE
REGRESSION COEFFICIENTS
AND HYPOTHESIS TESTING

With the aid of regression analysis we can obtain estimates of the parameters of a relationship.
However, they are only estimates. The next question to ask is, how reliable are they? We shall
answer this first in general terms, investigating the conditions for unbiasedness and the factors
governing their variance. Building on this, we shall develop a means of testing whether a regression
estimate is compatible with a specific prior hypothesis concerning the true value of a parameter, and
hence we shall derive a confidence interval for the true value, that is, the set of all hypothetical values
not contradicted by the experimental result. We shall also see how to test whether the goodness of fit
of a regression equation is better than might be expected on the basis of pure chance.

3.1 The Random Components of the Regression Coefficients

A least squares regression coefficient is a special form of random variable whose properties depend on
those of the disturbance term in the equation. This will be demonstrated first theoretically and then by
means of a controlled experiment. In particular, we will investigate the implications for the regression
coefficients of certain assumptions concerning the disturbance term.

Throughout the discussion we shall continue to work with the simple regression model where Y
depends on X according to the relationship

Yi= B+ BXi + u; 3.1)

and we are fitting the regression equation
Y, =b, +b,X, (3.2)

given a sample of n observations. We shall also continue to assume that X is a nonstochastic
exogenous variable; that is, that its value in each observation may be considered to be predetermined
by factors unconnected with the present relationship.

First, note that Y; has two components. It has a nonrandom component (8; + B,X;), which owes
nothing to the laws of chance (f; and 8, may be unknown, but nevertheless they are fixed constants),
and it has the random component u;.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 24.04.01.
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This implies that, when we calculate b, according to the usual formula

= Cov(X,Y) (3.3)
Var(X)
b, also has a random component. Cov(X, Y) depends on the values of Y, and the values of Y depend on
the values of u. If the values of the disturbance term had been different in the n observations, we
would have obtained different values of Y, hence of Cov(X, Y), and hence of b,.
We can in theory decompose b, into its nonrandom and random components. In view of (3.1),

Cov(X, Y) = Cov(X, [B:i + BX + u])
= Cov(X, B)) + Cov(X, B,X) + Cov(X, u) (3.4)

using Covariance Rule 1 in Section 1.2. By Covariance Rule 3, Cov(X, ;) must be equal to 0. By
Covariance Rule 2, Cov(X, 3,X) is equal to 3,Cov(X, X). Cov(X, X) is the same as Var(X). Hence we
can write

Cov(X, Y) = B,Var(X) + Cov(X, u) (3.5)
and so
_ Cov(X,Y) _ Cov(X,u)
> Var(X) Po Var(X) (3-6)

Thus we have shown that the regression coefficient b, obtained from any sample consists of (1) a fixed
component, equal to the true value, f3,, and (2) a random component dependent on Cov(X, u), which is
responsible for its variations around this central tendency. Similarly, one may easily show that b, has
a fixed component equal to the true value, f;, plus a random component that depends on the random
factor u.

Note that you are not able to make these decompositions in practice because you do not know the
true values of B, and 3, or the actual values of u in the sample. We are interested in them because they
enable us to say something about the theoretical properties of b; and b,, given certain assumptions.

3.2 A Monte Carlo Experiment

Nobody seems to know for certain how the Monte Carlo experiment got its name. Probably it has
something to do with the famous casino, as a symbol of the laws of chance.

The basic concept will be explained by means of an analogy. Suppose you have trained a pig to
find truffles for you. These fungi grow wild in the ground in France and Italy and are considered to be
delicious. They are expensive because they are hard to find, and a good truffle pig is highly valued.
The question is, how do you know if your pig is any good at truffle hunting? It may find them from
time to time, but for all you know it may miss a lot as well. If you were really interested you could
evaluate your pig by taking a piece of land, burying truffles in several places, letting the pig loose, and
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seeing how many it located. By means of this controlled experiment, you would have a direct measure
of its success rate.

What has this got to do with regression analysis? The problem is that we never know the true
values of f8; and 3, (otherwise, why should we use regression analysis to estimate them?), so we have
no means of telling whether the technique is giving us good or bad estimates. A Monte Carlo
experiment is an artificial, controlled experiment that allows us to check.

The simplest possible Monte Carlo experiment has three parts. First,

1. you choose the true values of B, and 3,,

2. you choose the value of X in each observation, and

3. you use some random number generating process to provide the random factor u in each
observation.

Second, you generate the value of Y in each observation, using the relationship (3.1) and the values of
Bi, B>, X and u. Third, using only the values of Y thus generated and the data for X, you use regression
analysis to obtain estimates b; and b,. You can then see if b; is a good estimator of B, and if b, is a
good estimator of 3, and this will give you some idea of whether the regression technique is working
properly.

In the first two steps you are preparing a challenge for the regression technique. You are in
complete control of the model that you are constructing and you know the true values of the
parameters because you yourself have determined them. In the third step you see whether the
regression technique can meet your challenge and provide good estimates of ; and 3, using only the
data on Y and X. Note that the inclusion of a stochastic term in the generation of Y is responsible for
the element of challenge. If you did not include it, the observations would lie exactly on the straight
line (3.1), and it would be a trivial matter to determine the exact values of 8; and 3, from the data on Y
and X.

Quite arbitrarily, let us put B, equal to 2 and 3, equal to 0.5, so the true relationship is

Y,' =2+ OSX, + U; (37)
TaABLE 3.1
1
X u Y : X u Y
1
1 -0.59 191 1 11 1.59 9.09
2 -0.24 276 12 -0.92 7.08
3 -0.83 267 13 -0.71 7.79
4 0.03 403 1 14 -0.25 8.75
5 -0.38 412 15 1.69 11.19
6 -2.19 281 16 0.15 10.15
7 1.03 653 1 17 0.02 10.52
8 0.24 624 18 -0.11 10.89
9 2.53 9.03 19 -091 10.59
10 -0.13 6.87 ! 20 1.42 13.42
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To keep things simple, we will assume that we have 20 observations and that the values of X go from
1 to 20. For u, the disturbance term, we will use random numbers drawn from a normally distributed
population with 0 mean and unit variance. We will need a set of 20 and will denote them rn; to rny,
u, the disturbance term in the first observation, is simply equal to rn,, u, to rn,, etc.

Given the values of X; and u; in each observation, it is possible to calculate the value of Y; using
(3.7), and this is done in Table 3.1.

If you now regress Y on X, you obtain

Y, =1.63+0.54X, (3.8)

In this case b, is an underestimate of 3, (1.63 as opposed to 2.00) and b, is a slight overestimate of 3,
(0.54 as opposed to 0.50). The discrepancies are caused by the collective effects of the disturbance
terms in the 20 observations.

Of course, one experiment such as this is hardly enough to allow us to evaluate the regression
technique. It gave quite good results, but perhaps this was a fluke. To check further, we will repeat the
experiment, keeping the same true equation (3.7) and the same values of X, but using a new set of
random numbers for the disturbance term drawn from the same distribution (0 mean and unit
variance). From these, and the values of X, we generate a new set of values for Y.

To save space, the table giving the new values of u and Y is omitted. The result when the new
values of Y are regressed on X is

Y, =2.52+0.48X, (3.9)

This second experiment also turned out quite well. Now b, is an overestimate of 3, and b, is a
slight underestimate of f,. Table 3.2 gives the estimates b, and b, with the experiment repeated 10
times, using a different set of random numbers for the disturbance term in each case.

You can see that, although you sometimes get overestimates and sometimes underestimates, on
the whole b, and b, are clustered around the true values of 2.00 and 0.50, respectively. And there are
more good estimates than bad ones. Taking b,, for example, if you repeated the experiment a very
large number of times and constructed a frequency table, you would obtain an approximation to the
probability density function shown in Figure 3.1. It is a normal distribution with mean 0.50 and
standard deviation 0.0388.

TABLE 3.2

Sample b, b,
1 1.63 0.54
2 2.52 0.48
3 2.13 0.45
4 2.14 0.50
5 1.71 0.56
6 1.81 0.51
7 1.72 0.56
8 3.18 0.41
9 1.26 0.58
10 1.94 0.52
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probability density
function of bz

10 S

T T
0.25 0.50 0.75 b

Figure 3.1. Distribution of b, in the Monte Carlo experiment

It has been asserted that the discrepancies between the regression coefficients and the true values
of the parameters are caused by the disturbance term u. A consequence of this is that the bigger is the
random element, the less accurate will be the estimate, in general.

This will be illustrated with a second set of Monte Carlo experiments related to the first. We shall
use the same values for 3; and J3, as before, and the same values of X, and the same source of random
numbers for the disturbance term, but we will now make the disturbance term in each observation,
which will be denoted u', equal to twice the random number drawn: u'y = 2rn;, u', = 2rn,, etc. In fact,
we will use exactly the same sample of random numbers as before, but double them. Corresponding
to Table 3.1, we now have Table 3.3.

Regressing Y on X, we now obtain the equation

Y, =1.26+0.58X, (3.10)

This is much less accurate than its counterpart, equation (3.8).

TABLE 3.3

X u Y X u Y
1 -1.18 1.32 11 3.18 10.68
2 -0.48 2.52 12 -1.84 6.16
3 -1.66 1.84 13 -1.42 7.08
4 0.06 3.94 14 -0.50 8.50
5 -0.76 3.74 ! 15 3.38 12.88
6 —4.38 0.62 16 0.30 10.30
7 2.06 7.56 17 0.04 10.54
8 0.48 6.48 X 18 -0.22 10.78
9 5.06 11.56 19 -1.82 9.68

10

-0.26 6.74 20 2.84 14.84
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TABLE 3.4

Sample b, b,
1 1.26 0.58
2 3.05 0.45
3 2.26 0.39
4 2.28 0.50
5 1.42 0.61
6 1.61 0.52
7 1.44 0.63
8 4.37 0.33
9 0.52 0.65
10 1.88 0.55

Table 3.4 gives the results for all 10 experiments, putting u' = 2rn. We will call this set of
experiments II and the original set, summarized in Table 3.2, I. Comparing Tables 3.2 and 3.4, you
can see that the values of b; and b, are much more erratic in the latter, although there is still no
systematic tendency either to underestimate or to overestimate.

Detailed inspection reveals an important feature. In Set I, the value of b, in sample 1 was 0.54, an
overestimate of 0.04. In Set II, the value of b, in sample 1 was 0.58, an overestimate of 0.08. Exactly
twice as much as before. The same is true for each of the other nine samples, and also for the
regression coefficient b; in each sample. Doubling the disturbance term in each observation causes a
doubling of the errors in the regression coefficients.

This result follows directly from the decomposition of b, given by (3.6). In Set I the error
component of b, is given by Cov(X, u)/Var(X). In Set Il it is given by Cov(X, u')/Var(X), and

Cov(X,u'") _ Cov(X,2u) _y Cov(X,u)
Var(X) Var(X) Var(X)

(3.11)

probability density
function of bo

10

" : . |
0.25 0.50 075 b

Figure 3.2. Distribution of b, when the standard deviation of uis doubled
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The increase in inaccuracy is reflected in the probability density function for b, in Set II, shown as the
solid curve in Figure 3.2. This is still centered over the true value, 0.50, but, if you compare it with
that for Set I, the dotted curve, you will see that it is flatter and wider. Doubling the values of u has
caused a doubling of the standard deviation of the distribution.

3.3 Assumptions Concerning the Disturbance Term

It is thus obvious that the properties of the regression coefficients depend critically on the properties of
the disturbance term. Indeed the latter has to satisfy four conditions, known as the Gauss—Markov
conditions, if ordinary least squares regression analysis is to give the best possible results. If they are
not satisfied, the user should be aware of the fact. If remedial action is possible, he or she should be
capable of taking it. If it is not possible, he or she should be able to judge how seriously the results
may have been affected. We shall list the conditions one by one, explaining briefly why they are
important. The last three will be treated in detail in later chapters.

Gauss—Markov Condition 1: E(u;) = 0 for All Observations

The first condition is that the expected value of the disturbance term in any observation should be 0.
Sometimes it will be positive, sometimes negative, but it should not have a systematic tendency in
either direction.

Actually, if an intercept is included in the regression equation, it is usually reasonable to assume
that this condition is satisfied automatically since the role of the intercept is to pick up any systematic
but constant tendency in Y not accounted for by the explanatory variables included in the regression
equation.

Gauss—Markov Condition 2: Population Variance of u; Constant for All Observations

The second condition is that the population variance of the disturbance term should be constant for all
observations. Sometimes the disturbance term will be greater, sometimes smaller, but there should not

be any a priori reason for it to be more erratic in some observations than in others. The constant is
2

u >

usually denoted o , often abbreviated to o , and the condition is written

o =o’ foralli (3.12)

Since E(u;) is 0, the population variance of u; is equal to E( ul2 ), so the condition can also be written
Eu})=0c_ forall i (3.13)

o,, of course, is unknown. One of the tasks of regression analysis is to estimate the standard

deviation of the disturbance term.
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If this condition is not satisfied, the OLS regression coefficients will be inefficient, and you
should be able to to obtain more reliable results by using a modification of the regression technique.
This will be discussed in Chapter 8.

Gauss—Markov Condition 3: u; Distributed Independently of u; (i # j)

This condition states that there should be no systematic association between the values of the
disturbance term in any two observations. For example, just because the disturbance term is large and
positive in one observation, there should be no tendency for it to be large and positive in the next (or
large and negative, for that matter, or small and positive, or small and negative). The values of the
disturbance term should be absolutely independent of one another.

The condition implies that & the population covariance between u; and u; , is 0, because

uiu >

O, = El(ui = ) — )] = Eu; wj)
= E(u;)E(uj) = O (314)

(Note that the population means of u; and u; are 0, by virtue of the first Gauss—Markov condition, and
that E(uu;) can be decomposed as E(u;)E(u;) if u; and u; are generated independently — see the Review
chapter.)

If this condition is not satisfied, OLS will again give inefficient estimates. Chapter 13 discusses
the problems that arise and ways of getting around them.

Gauss—Markov Condition 4: u Distributed Independently of the Explanatory Variables

The final condition comes in two versions, weak and strong. The strong version is that the
explanatory variables should be nonstochastic, that is, not have random components. This is actually
very unrealistic for economic variables and we will eventually switch to the weak version of the
condition, where the explanatory variables are allowed to have random components provided that they
are distributed independently of the disturbance term. However, for the time being we will use the
strong version because it simplifies the analysis of the properties of the estimators.

It is not easy to think of truly nonstochastic variables, other than time, so the following example
is a little artificial. Suppose that we are relating earnings to schooling, S, in terms of highest grade
completed. Suppose that we know from the national census that 1 percent of the population have S = 8§,
3 percent have § =9, 5 percent have S = 10, 7 percent have § = 11, 43 percent have S = 12 (graduation
from high school), and so on. Suppose that we have decided to undertake a survey with sample size
1,000 and we want the sample to match the population as far as possible. We might then select what is
known as a stratified random sample, designed so that it includes 10 individuals with § = 8, 30
individuals with S = 9, and so on. The values of § in the sample would then be predetermined and
therefore nonstochastic. Schooling and other demographic variables in large surveys drawn in such a
way as to be representative of the population as a whole, like the National Longitudinal Survey of
Youth, probably approximate this condition quite well.

If this condition is satisfied, it follows that o Xu,* the population covariance between the

explanatory variable and the disturbance term is 0. Since E(u;) is 0, and the term involving X is
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nonstochastic,

Ox,, = E{Xi— E(X) Hui — 1}
=Xi—X) E(u)=0 (3.15)

Chapters 9 and 10 discuss two important cases in which this condition is unlikely to be satisfied, and
the consequences.

The Normality Assumption

In addition to the Gauss—Markov conditions, one usually assumes that the disturbance term is
normally distributed. You should know all about the normal distribution from your introductory
statistics course. The reason is that if u is normally distributed, so will be the regression coefficients,
and this will be useful to us later in the chapter when we come to the business of performing tests of
hypotheses and constructing confidence intervals for f3; and B, using the regression results.

The justification for the assumption depends on the Central Limit Theorem. In essence, this states
that, if a random variable is the composite result of the effects of a large number of other random
variables, it will have an approximately normal distribution even if its components do not, provided that
none of them is dominant. The disturbance term u is composed of a number of factors not appearing
explicitly in the regression equation so, even if we know nothing about the distribution of these factors (or
even their identity), we are entitled to assume that they are normally distributed.

3.4 Unbiasedness of the Regression Coefficients

From (3.6) we can show that b, must be an unbiased estimator of B, if the fourth Gauss—Markov
condition is satisfied:

_ Cov(X,u) _ Cov(X,u)
E(bz)—E[ﬁz +—Var(X) :| B, +E[—Var(X) :| (3.16)

since f3, is a constant. If we adopt the strong version of the fourth Gauss—Markov condition and
assume that X is nonrandom, we may also take Var(X) as a given constant, and so

1
E(b,) =P, +mE[COV(X,u)] (3.17)

We will demonstrate that E[Cov(X, u)] is O:
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1 — _
E[Cov(X,u)|=E ZZ(XZ. - X)(u, —u):|

i=1

(Elx, - N, -]+ ..+ Elx, - X, )

(3.18)

n

==Y Elx, - X, -]

i=1

S|~ I |-

=13 (X, - X)Ew, -1) =0
n

i=1

In the second line, the second expected value rule has been used to bring (1/n) out of the expression as
a common factor, and the first rule has been used to break up the expectation of the sum into the sum
of the expectations. In the third line, the term involving X has been brought out because X is
nonstochastic. By virtue of the first Gauss—Markov condition, E(y;) is 0 , and hence E(u ) is also 0.
Therefore E[Cov(X, u)] is 0 and

E(by) = B> (3.19)

In other words, b, is an unbiased estimator of ,. We can obtain the same result with the weak version
of the fourth Gauss—Markov condition (allowing X to have a random component but assuming that it is
distributed independently of u); this is demonstrated in Chapter 9.

Unless the random factor in the n observations happens to cancel out exactly, which can happen
only by coincidence, b, will be different from f3, for any given sample, but in view of (3.19) there will
be no systematic tendency for it to be either higher or lower. The same is true for the regression
coefficient b;. Using equation (2.31),

b =Y -b,X (3.20)
Hence
E(b)=EY)—-XE(b,) (3.21)
Since Y; is determined by
Yi=Bi+ BXi+u (3.22)

we have
E(Y) =i+ BX; + E(w;)
=B, + X (3.23)
because E(u;) is 0 if the first Gauss—Markov condition is satisfied. Hence

EY)=B+B,X (3.24)

Substituting this into (3.21), and using the result that E(b,) = B,,
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E(b)=(B,+B,X)-XB, =B, (3.25)

Thus b; is an unbiased estimator of fB; provided that the Gauss—Markov conditions 1 and 4 are

satisfied. Of course in any given sample the random factor will cause b, to differ from S;.

3.5 Precision of the Regression Coefficients

Now we shall consider szl and 01,22, the population variances of b; and b, about their population

means. These are given by the following expressions (proofs for equivalent expressions can be found
in Thomas, 1983, Section 8.3.3):

2 v 2 2

X

o2 =214 and o2 =—Ju__ (3.26)
' n Var(X) > nVar(X)

Equation (3.26) has three obvious implications. First, the variances of both b, and b, are directly
inversely proportional to the number of observations in the sample. This makes good sense. The
more information you have, the more accurate your estimates are likely to be.

Second, the variances are proportional to the variance of the disturbance term. The bigger the
variance of the random factor in the relationship, the worse the estimates of the parameters are likely
to be, other things being equal. This is illustrated graphically in Figures 3.3a and 3.3b. In both
diagrams the nonstochastic component of the relationship between Y and X, depicted by the dotted
line, is given by

Y:=3.0 + 0.8 (3.27)

There are 20 observations, with the values of X being the integers from 1 to 20. The same random
numbers are used to generate the values of the disturbance term, but those in the Figure 3.3b have been
multiplied by a factor of 5. As a consequence the regression line, depicted by the solid line, is a much
poorer approximation to the nonstochastic relationship in Figure 3.3b than in Figure 3.3a.

Third, the variance of the regression coefficients is inversely related to the variance of X. What is
the reason for this? Remember that (1) the regression coefficients are calculated on the assumption
that the observed variations in Y are due to variations in X, but (2) they are in reality partly due to
variations in X and partly to variations in u. The smaller the variance of X, the greater is likely to be
the relative influence of the random factor in determining the variations in Y and the more likely is
regression analysis give inaccurate estimates. This is illustrated by Figures 3.4a and 3.4b. The
nonstochastic component of the relationship is given by (3.27), and the disturbance terms are identical.
In Figure 3.4a the values of X are the integers from 1 to 20. In Figure 3.4b, the values of X are the
numbers 9.1, 9.2, ..., 10.9, 11. In Figure 3.4a, the variance in X is responsible for most of the variance
in Y and the relationship between the two variables can be determined relatively accurately. However,
in Figure 3.4b, the variance of X is so small that it is overwhelmed by the effect of the variance of u.
As a consequence its effect is difficult to pick out and the estimates of the regression coefficients will
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be relatively inaccurate.
Of course, Figures 3.3 and 3.4 make the same point in different ways. As can be seen from

(3.26), it is the relative size of G,f and Var(X) that is important, rather than the actual size of either.
In practice, one cannot calculate the population variances of either b, or b, because 03 is

unknown. However, we can derive an estimator of . from the residuals. Clearly the scatter of the

residuals around the regression line will reflect the unseen scatter of u about the line Y; = B, + B.X,
although in general the residual and the value of the disturbance term in any given observation are not
equal to one another. Hence the sample variance of the residuals, Var(e), which we can measure, will
be a guide to 03 , which we cannot.

Before going any further, ask yourself the following question. Which line is likely to be closer to

the points representing the sample of observations on X and Y, the true line Y; = B; + B.X; or the
regression line }9, = by + b,X;? The answer is the regression line, because by definition it is drawn in

such a way as to minimize the sum of the squares of the distances between it and the observations.
Hence the spread of the residuals will tend to be smaller than the spread of the values of u, and Var(e)

will tend to underestimate 03 . Indeed, it can be shown that the expected value of Var(e), when there
is just one explanatory variable, is [(n — 2)/n] 03 . However, it follows that, if one defines si by

2 n

S, =

5 Var(e) (3.28)

s. will be an unbiased estimator of o> (for a proof, see Thomas).

Using (3.26) and (3.28), one can obtain estimates of the population variances of b; and b, and, by
taking square roots, estimates of their standard deviations. Rather than talk about the “estimate of the
standard deviation of the probability density function” of a regression coefficient, which is a bit
cumbersome, one uses the term ‘“standard error” of a regression coefficient, which in this text will
frequently be abbreviated to s.e. For simple regression analysis, therefore, one has

s2 X? s’
s.e.(by) = 7[l+ Var(X):| and s.e.(by) = m (3.29)

The standard errors of the regressions coefficient will automatically be calculated for you as part of the
computer output.

These relationships will be illustrated with the Monte Carlo experiment described in Section 3.2.
In Set I, u was determined by random numbers drawn from a population with 0 mean and unit

variance, SO 03 = 1. X was the set of numbers from 1 to 20, and one can easily calculate Var(X),
which is 33.25. Hence

2
, 1 [HIO.S

o, =— =0.2158, (3.30)
t20 33.25

and
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TABLE 3.5
Sample  s.e.(b,) Sample s.e.(b,)
1 0.043 6 0.044
2 0.041 7 0.039
3 0.038 8 0.040
4 0.035 9 0.033
5 0.027 10 0.033
2 1
o, =——=0.001504. (3.31)
> 20x33.25

Therefore, the true standard deviation of b, is v0.001504 =0.039. What did the computer make of it
in the 10 samples in Set I? It has to calculate the standard error using (3.29), with the results shown in
Table 3.5 in the 10 samples. As you can see, most of the estimates are quite good.

One fundamental point must be emphasized. The standard error gives only a general guide to the
likely accuracy of a regression coefficient. It enables you to obtain some idea of the width, or
narrowness, of its probability density function as represented in Figure 3.1, but it does not tell you
whether your regression estimate comes from the middle of the function, and is therefore accurate, or
from the tails, and is therefore relatively inaccurate.

The higher the variance of the disturbance term, the higher the sample variance of the residuals is
likely to be, and hence the higher will be the standard errors of the coefficients in the regression
equation, reflecting the risk that the coefficients are inaccurate. However, it is only a risk. It is
possible that in any particular sample the effects of the disturbance term in the different observations
will cancel each other out and the regression coefficients will be accurate after all. The trouble is that
in general there is no way of telling whether you happen to be in this fortunate position or not.

Exercises

Where performance on a game of skill is measured numerically, the improvement that comes with
practice is called a learning curve. This is especially obvious with some arcade-type games. The first
time players try a new one, they are likely to score very little. With more attempts, their scores should
gradually improve as they become accustomed to the game, although obviously there will be
variations caused by the luck factor. Suppose that their scores are determined by the learning curve

Y, = 500 + IOOXl + U;,

where Y is the score, X is the number of times that they have played before, and u is a disturbance
term.

The following table gives the results of the first 20 games of a new player: X automatically goes
from O to 19; u was set equal to 400 times the numbers generated by a normally distributed random
variable with O mean and unit variance; and Y was determined by X and u according to the learning
curve.
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3.1
3.2
3.3

3.4

Observation X u Y
1 0 -236 264
2 1 -96 504
3 2 -332 368
4 3 12 812
5 4 -152 748
6 5 -876 124
7 6 412 1,512
8 7 96 1,296
9 8 1,012 2,312

10 9 -52 1,348
11 10 636 2,136
12 11 -368 1,232
13 12 -284 1,416
14 13 -100 1,700
15 14 676 2,576
16 15 60 2,060
17 16 8 2,108
18 17 —44 2,156
19 18 -364 1,936
20 19 568 2,968

Regressing Y on X, one obtains the equation (standard errors in parentheses):

Why is the constant in this equation not equal to 500 and the coefficient of X not equal to 100?

What is the meaning of the standard errors?

Y = 369 + 116.8X
(190) (17.1)

16

The experiment is repeated with nine other new players (the disturbance term being generated by

400 times a different set of 20 random numbers in each case), and the regression results for all ten

players are shown in the following table. Why do the constant, the coefficient of X, and the

standard errors vary from sample to sample?

Standard error of

Standard error of

Player Constant constant Coefficient of X coefficient of X
1 369 190 116.8 17.1
2 699 184 90.1 16.5
3 531 169 78.5 15.2
4 555 158 99.5 14.2
5 407 120 122.6 10.8
6 427 194 104.3 17.5
7 412 175 123.8 15.8
8 613 192 95.8 17.3
9 234 146 130.1 13.1

10 485 146 109.6 13.1

The variance of X is equal to 33.25 and the population variance of u is equal to 160,000. Using

equation (3.29), show that the standard deviation of the probability density function of the

coefficient of X is equal to 15.5. Are the standard errors in the table good estimates of this

standard deviation?
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3.6 The Gauss—Markov Theorem

In the Review, we considered estimators of the unknown population mean p of a random variable X,
given a sample of observations. Although we instinctively use the sample mean X as our estimator,
we saw that it was only one of an infinite number of possible unbiased estimators of (. The reason that
the sample mean is preferred to any other estimator is that, under certain assumptions, it is the most
efficient.

Similar considerations apply to regression coefficients. We shall see that the OLS estimators are
not the only unbiased estimators of the regression coefficients, but, provided that the Gauss—Markov
conditions are satisfied, they are the most efficient. The other side of the coin is that, if the Gauss—
Markov conditions are not satisfied, it will in general be possible to find estimators that are more
efficient than OLS.

We will not attempt a general discussion of these issues here. We will instead give an illustration.
We shall assume that we have a relationship given by

Y,' = ﬁl + ﬁzX,' + u;, (332)
and we shall confine our attention to estimators of 3. Someone who had never heard of regression
analysis, on seeing a scatter diagram of a sample of observations, might be tempted to obtain an
estimate of the slope merely by joining the first and the last observations, and by dividing the increase

in the height by the horizontal distance between them, as in Figure 3.5. The estimator b, would then be
given by

by=—n""1 (3.33)

What are the properties of this estimator? First, we will investigate whether it is biased or
unbiased. Applying (3.32) to the first and last observations, we have

Yn

X1 Xn X

Figure 3.5. Naive estimation of b,
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Y =B+ BX +uy (3.34)
and

Y, =B+ BX + u, (3.35)
Hence

_ B, X, +u,—B,X, —u,

b
? Xn_Xl
(3.36)
Mn_ul
= R ——
B, X X,

Thus we have decomposed this naive estimator into two components, the true value and an error term.
This decomposition is parallel to that for the OLS estimator in Section 3.1, but the error term is
different. The expected value of the estimator is given by

- o
E(b,) = E(ﬁz)‘*'E[Xn _X1:|
1 (3.37)
=B, +TX1E(% —u;)

since 3, is a constant and X; and X, are nonstochastic. If the first Gauss—Markov condition is satisfied,
E(u, — uy) = E(u,) — E(u;) =0 (3.38)

Therefore, despite being naive, this estimator is unbiased.

This is not by any means the only estimator besides OLS that is unbiased. You could derive one
by joining any two arbitrarily selected observations, and in fact the possibilities are infinite if you are
willing to consider less naive procedures.

It is intuitively easy to see that we would not prefer a naive estimator such as (3.33) to OLS.
Unlike OLS, which takes account of every observation, it employs only the first and the last and is
wasting most of the information in the sample. The naive estimator will be sensitive to the value of
the disturbance term u in those two observations, whereas the OLS estimator combines all the values
of the disturbance term and takes greater advantage of the possibility that to some extent they cancel
each other out. More rigorously, it can be shown that the population variance of the naive estimator is
greater than that of the OLS estimator, and that the naive estimator is therefore less efficient.

With less naive estimators the superior efficiency of OLS may not be so obvious. Nevertheless,
provided that the Gauss—Markov conditions for the disturbance term are satisfied, the OLS regression
coefficients will be best linear unbiased estimators (BLUE): unbiased, as has already been
demonstrated; linear, because they are linear functions of the values of ¥; and best because they are the
most efficient of the class of unbiased linear estimators. This is proved by the Gauss—Markov theorem
(for a concise treatment not using matrix algebra, see Johnston and Dinardo, 1997).
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Exercises

3.5 An investigator correctly believes that the relationship between two variables X and Y is given
by

Y= B+ BoXi + s,

Given a sample of n observations, the investigator estimates 3, by calculating it as the average
value of Y divided by the average value of X. Discuss the properties of this estimator. What
difference would it make if it could be assumed that B, is equal to 0?

3.6* An investigator correctly believes that the relationship between two variables X and Y is given
by

Y=+ BXi + u;,

Given a sample of observations on Y, X and a third variable Z (which is not a determinant of Y),
the investigator estimates 3, as Cov(Y, Z)/Cov(X, Z). Discuss the properties of this estimator. (It
can be shown that its population variance is equal to the population variance of the
corresponding OLS estimator divided by the square of ry;, where rx, is the correlation
coefficient for X and Z.)

3.7 Testing Hypotheses Relating to the Regression Coefficients

Which comes first, theoretical hypothesizing or empirical research? There is a bit like asking which
came first, the chicken or the egg. In practice, theorizing and experimentation feed on each other, and
questions of this type cannot be answered. For this reason, we will approach the topic of hypothesis
testing from both directions. On the one hand, we may suppose that the theory has come first and that
the purpose of the experiment is to evaluate its plausibility. This will lead to the execution of
significance tests. Alternatively, we may perform the experiment first and then consider what
theoretical hypotheses would be consistent with the results. This will lead to the construction of
confidence intervals.

You will already have encountered the logic underlying significance tests and confidence
intervals in an introductory statistics course. You will thus be familiar with most of the concepts in the
following applications to regression analysis. There is, however, one topic that may be new: the use of
one-tailed tests. Such tests are used very frequently in regression analysis. Indeed, they are, or they
ought to be, more common than the traditional textbook two-tailed tests. It is therefore important that
you understand the rationale for their use, and this involves a sequence of small analytical steps. None
of this should present any difficulty, but be warned that, if you attempt to use a short cut or, worse, try
to reduce the whole business to the mechanical use of a few formulae, you will be asking for trouble.
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Formulation of a Null Hypothesis

We will start by assuming that the theory precedes the experiment and that you have some
hypothetical relationship in your mind. For example, you may believe that the percentage rate of price
inflation in an economy, p, depends on the percentage rate of wage inflation, w, according to the linear
equation

p=Pi+pw+u (3.39)

where f; and f3, are parameters and u is a disturbance term. You might further hypothesize that, apart
from the effects of the disturbance term, price inflation is equal to wage inflation. Under these
circumstances you would say that the hypothesis that you are going to test, known as your null
hypothesis and denoted H,, is that 3 is equal to 1. We also define an alternative hypothesis, denoted
H,, which represents your conclusion if the experimental test indicates that H, is false. In the present
case H, is simply that 3, is not equal to 1. The two hypotheses are stated using the notation

H()Z ﬁzzl
H]Zﬁz #1

In this particular case, if we really believe that price inflation is equal to wage inflation, we are trying
to establish the credibility of Hy by subjecting it to the strictest possible test and hoping that it emerges
unscathed. In practice, however, it is more usual to set up a null hypothesis and attack it with the
objective of establishing the alternative hypothesis as the correct conclusion. For example, consider
the simple earnings function

EARNINGS = B, + B:S + u (3.40)

where EARNINGS is hourly earnings in dollars and S is years of schooling. On very reasonable
theoretical grounds, you expect earnings to be dependent on schooling, but your theory is not strong
enough to enable you to specify a particular value for B,. You can nevertheless establish the
dependence of earnings on schooling by the inverse procedure in which you take as your null
hypothesis the assertion that earnings does nor depend on schooling, that is, that 8, is 0. Your
alternative hypothesis is that 3, is not equal to 0, that is, that schooling does affect earnings. If you
can reject the null hypothesis, you have established the relationship, at least in general terms. Using
the conventional notation, your null and alternative hypotheses are Hy: B, =0 and H;: B, #0,
respectively.
The following discussion uses the simple regression model

Y= B+ BoXi + u;, (3.41)

It will be confined to the slope coefficient, 3,, but exactly the same procedures are applied to the
constant term, ;. We will take the general case, where you have defined a null hypothesis that 3, is

equal to some specific value, say [32 , and the alternative hypothesis is that 3, is not equal to this value

(Ho: B = BY, Hy: B> # BY); you may be attempting to attack or defend the null hypothesis as it suits

your purpose. We will assume that the four Gauss—Markov conditions are satisfied.
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Figure 3.6. Structure of the normal distribution of b, in terms of
standard deviations about the mean

Developing the Implications of a Hypothesis

If Hy is correct, values of b, obtained using regression analysis in repeated samples will be distributed
with mean ﬁ;) and variance 63 /[n Var(X)] (see 3.26). We will now introduce the assumption that u

has a normal distribution. If this is the case, b, will also be normally distributed, as shown in Figure
3.6. "sd" in the figure refers to the standard deviation of b,, that is wmi /[n Var(X)] . In view of the
structure of the normal distribution, most values of b, will lie within two standard deviations of ﬁg af

Hy: B, =) is true).

Initially we will assume that we know the standard deviation of the distribution of b,. This is a
most unreasonable assumption, and we will drop it later. In practice we have to estimate it, along with
Bi and B, but it will simplify the discussion if for the time being we suppose that we know it exactly,
and hence are in a position to draw Figure 3.6.

probability density
function of b

07 08 09 10 11 12 13 b

Figure 3.7 Example distribution of b, (price inflation/wage inflation model)
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We will illustrate this with the price inflation/wage inflation model (3.39). Suppose that for some
reason we know that the standard deviation of b, is equal to 0.1. Then, if our null hypothesis
Hy: B> =1 is correct, regression estimates would be distributed as shown in Figure 3.7. You can see
that, provided that the null hypothesis is correct, the estimates will generally lie between 0.8 and 1.2.

Compatibility, Freakiness and the Significance Level

Now we come to the crunch. Suppose that we take an actual sample of observations on average rates
of price inflation and wage inflation over the past five years for a sample of countries and estimate f3,
using regression analysis. If the estimate is close to 1.0, we should almost certainly be satisfied with
the null hypothesis, since it and the sample result are compatible with one another, but suppose, on the
other hand, that the estimate is a long way from 1.0. Suppose that it is equal to 0.7. This is three
standard deviations below 1.0. If the null hypothesis is correct, the probability of being three standard
deviations away from the mean, positive or negative, is only 0.0027, which is very low. You could
come to either of two conclusions about this worrisome result:

1. You could continue to maintain that your null hypothesis Hy: 8, = 1 is correct, and that the
experiment has given a freak result. You concede that the probability of such a low value of
b, is very small, but nevertheless it does occur 0.27 percent of the time and you reckon that
this is one of those times.

2. You could conclude that the hypothesis is contradicted by the regression result. You are not
convinced by the explanation in (1) because the probability is so small and you think that a
much more likely explanation is that 3, is not really equal to 1. In other words, you adopt the
alternative hypothesis H;: 3, # 1 instead.

How do you decide when to choose (1) and when to choose (2)? Obviously, the smaller the
probability of obtaining a regression estimate such as the one you have obtained, given your
hypothesis, the more likely you are to abandon the hypothesis and choose (2). How small should the
probability be before choosing (2)?

There is, and there can be, no definite answer to this question. In most applied work in
economics either 5 percent or 1 percent is taken as the critical limit. If 5 percent is taken, the switch to
(2) is made when the null hypothesis implies that the probability of obtaining such an extreme value of
b, is less than 5 percent. The null hypothesis is then said to be rejected at the 5 percent significance
level.

This occurs when b, is more than 1.96 standard deviations from ﬁ;) . If you look up the normal

distribution table, Table A.1 at the end of the text, you will see that the probability of b, being more
than 1.96 standard deviations above its mean is 2.5 percent, and similarly the probability of it being
more than 1.96 standard deviations below its mean is 2.5 percent. The total probability of it being
more than 1.96 standard deviations away is thus 5 percent.

We can summarize this decision rule mathematically by saying that we will reject the null
hypothesis if

z>196 or z<-1.96 (3.42)
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where z is the number of standard deviations between the regression estimate and the hypothetical
value of f3,:

distance between regression estimate

_ and hypothetical value _b, - B (3.43)
standard deviation of b, s.d.(b,)
The null hypothesis will not be rejected if
-1.96 < z < 1.96 (3.44)
This condition can be expressed in terms of b, and [32 by substituting for z from (3.43):
-1.96 < M < 1.96 (3.45)
s.d.(b,)
Multiplying through by the standard deviation of b,, one obtains
~1.96 5.d.(by) < by— By < 1.96 5.d.(by) (3.46)
from which one obtains
BY —1.965.d.(hy) < by < BY +1.96 5.d.(b) (3.47)

Equation (3.47) gives the set of values of b, which will not lead to the rejection of a specific null
hypothesis 8, = B3 . It is known as the acceptance region for b,, at the 5 percent significance level.

In the case of the price inflation/wage inflation example, where s.d.(b,) is equal to 0.1, you would
reject at the 5 percent level if b, lies more than 0.196 above or below the hypothetical mean, that is,
above 1.196 or below 0.804. The acceptance region is therefore those values of b, from 0.804 to
1.196. This is illustrated by the unshaded area in Figure 3.8.

probability density

function of b. .
acceptance region

0.804 1 1.196 b

Figure 3.8. Acceptance region for by, 5 percent significance level
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Type | and Type Il Errors in Everyday Life

The problem of trying to avoid Type I and Type II errors will already be familiar to
everybody. A criminal trial provides a particularly acute example. Taking as the null
hypothesis that the defendant is innocent, a Type I error occurs when the jury wrongly
decides that the defendant is guilty. A Type II error occurs when the jury wrongly
acquits the defendant.

Similarly, the null hypothesis is said to be rejected at the 1 percent significance level if the
hypothesis implies that the probability of obtaining such an extreme value of b, is less than 1 percent.
This occurs when b, is more than 2.58 standard deviations above or below the hypothetical value of
B, that is, when

z>2.58 or z<-2.58 (3.48)

Looking at the normal distribution table again, you will see that the probability of b, being more
than 2.58 standard deviations above its mean is 0.5 percent, and there is the same probability of it
being more than 2.58 standard deviations below it, so the combined probability of such an extreme
value is 1 percent. In the case of our example, you would reject the null hypothesis 3, = 1 if the
regression estimate lay above 1.258 or below 0.742.

You may ask, why do people usually report, or at least consider reporting, the results at both the 5
percent and the 1 percent significance levels? Why not just one? The answer is that they are trying to
strike a balance between the risks of making Type I errors and Type Il errors. A Type I error occurs
when you reject a true null hypothesis. A Type Il error occurs when you do not reject a false one.

Obviously, the lower your critical probability, the smaller is the risk of a Type I error. If your
significance level is 5 percent, you will reject a true hypothesis 5 percent of the time. If it is 1 percent,
you will make a Type I error 1 percent of the time. Thus the 1 percent significance level is safer in
this respect. If you reject the hypothesis at this level, you are almost certainly right to do so. For this
reason the 1 percent significance level is described as higher than the 5 percent.

At the same time, if the null hypothesis happens to be false, the higher your significance level, the
wider is your acceptance region, the greater is your chance of not rejecting it, and so the greater is the
risk of a Type Il error. Thus you are caught between the devil and the deep blue sea. If you insist on a
very high significance level, you incur a relatively high risk of a Type II error if the null hypothesis
happens to be false. If you choose a low significance level, you run a relatively high risk of making a
Type I error if the null hypothesis happens to be true.

Most people take out an insurance policy and perform the test at both these levels, being prepared
to quote the results of each. Actually, it is frequently superfluous to quote both results explicitly.
Since b, has to be more extreme for the hypothesis to be rejected at the 1 percent level than at the 5
percent level, if you reject at the 1 percent level it automatically follows that you reject at the 5 percent
level, and there is no need to say so. Indeed, you look ignorant if you do. And if you do not reject at
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the 5 percent level, it automatically follows that you will not reject at the 1 percent level, and again
you would look ignorant if you said so. The only time when you should quote both results is when
you reject the null hypothesis at the 5 percent level but not at the 1 percent level.

What Happens if the Standard Deviation of b, is Not Known

So far we have assumed that the standard deviation of b, is known, which is most unlikely in practice.
It has to be estimated by the standard error of b,, given by (3.29). This causes two modifications to the
test procedure. First, z is now defined using s.e.(b,) instead of s.d.(b,), and it is referred to as the ¢
statistic:

0
f= by =B, (3.49)
s.e(b,)

Second, the critical levels of ¢ depend upon what is known as a ¢ distribution instead of a normal
distribution. We will not go into the reasons for this, or even describe the ¢ distribution
mathematically. Suffice to say that it is a cousin of the normal distribution, its exact shape depending
on the number of degrees of freedom in the regression, and that it approximates the normal
distribution increasingly closely as the number of degrees of freedom increases. You will certainly
have encountered the ¢ distribution in your introductory statistics course. Table A.2 at the end of the
text gives the critical values of ¢ cross-classified by significance level and the number of degrees of
freedom.

The estimation of each parameter in a regression equation consumes one degree of freedom in the
sample. Hence the number of degrees of freedom is equal to the number of observations in the sample
minus the number of parameters estimated. The parameters are the constant (assuming that this is
specified in the regression model) and the coefficients of the explanatory variables. In the present case
of simple regression analysis, only two parameters, 3; and [3,, are estimated and hence the number of
degrees of freedom is n — 2. It should be emphasized that a more general expression will be required
when we come to multiple regression analysis.

The critical value of #, which we will denote ., replaces the number 1.96 in (3.45), so the

condition that a regression estimate should not lead to the rejection of a null hypothesis Hy: B, = B;

is

_ 0
<M<t. (3.50)

et = S.e.(bz) crit

_ o
2~ P2

s.e.(b,)

by~ B3
s.e.(by)

Hence we have the decision rule: reject Hy if >t » do not reject if <t

crit ° crit »

b, - B

s.e.(b,)

where is the absolute value (numerical value, neglecting the sign) of z.




PROPERTIES OF THE REGRESSION COEFFICIENTS

Examples

. reg EARNINGS S

26

Source | SS af MS Number of obs = 570
————————— e F( 1, 568) = 65.64
Model | 3977.38016 1 3977.38016 Prob > F = 0.0000
Residual | 34419.6569 568 60.5979875 R-squared = 0.1036
————————— e Adj R-squared = 0.1020
Total | 38397.0371 569 67.4816117 Root MSE = 7.7845
EARNINGS | Coef Sstd. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
S | 1.073055 .1324501 8.102 0.000 .8129028 1.333206

cons | -1.391004 1.820305 -0.764 0.445 -4.966354 2.184347

In Section 2.6 hourly earnings were regressed on years of schooling using data from the United States
National Longitudinal Survey of Youth with the output shown above. The first two columns give the
names of the variables, here just S and the intercept (Stata denotes this as _cons) and the estimates of
their coefficients. The third column gives the corresponding standard errors. Let us suppose that one
of the purposes of the regression was to confirm our intuition that earnings are affected by education.
Accordingly, we set up the null hypothesis that 3, is equal to 0 and try to refute it. The corresponding
t statistic, using (3.49), is simply the estimate of the coefficient divided by its standard error:

b J  b,—-0 10731 _
se(b,) se(b,) 0.1325

(3.51)

Since there are 570 observations in the sample and we have estimated two parameters, the
number of degrees of freedom is 568. Table A.2 does not give the critical values of ¢ for 568 degrees
of freedom, but we know that they must be lower than the corresponding critical values for 500, since
the critical value is inversely related to the number of degrees of freedom. The critical value with 500
degrees of freedom at the 5 percent level is 1.965. Hence we can be sure that we would reject Hy at
the 5 percent level with 568 degrees of freedom and we conclude that schooling does affect earnings.

To put this test into words, with 568 degrees of freedom the upper and lower 2.5 percent tails of
the ¢ distribution start approximately 1.965 standard deviations above and below its mean of 0. The
null hypothesis will not be rejected if the regression coefficient is estimated to lie within 1.965
standard deviations of 0. In this case, however, the discrepancy is equivalent to 8.10 estimated
standard deviations and we come to the conclusion that the regression result contradicts the null
hypothesis.

Of course, since we are using the 5 percent significance level as the basis for the test, there is in
principle a 5 percent risk of a Type I error, if the null hypothesis is true. In this case we could reduce
the risk to 1 percent by using the 1 percent significance level instead. The critical value of ¢ at the 1
percent significance level with 500 degrees of freedom is 2.586. Since the ¢ statistic is greater than
this, we see that we can easily reject the null hypothesis at this level as well.

Note that when the 5 percent and 1 percent tests lead to the same conclusion, there is no need to
report both, and indeed you would look ignorant if you did. Read carefully the box on reporting test
results.
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This procedure of establishing a relationship between a dependent and an explanatory variable by
setting up, and then refuting, a null hypothesis that 3, is equal to O is used very frequently indeed.
Consequently all serious regression applications automatically print out the ¢ statistic for this special
case, that is, the coefficient divided by its standard error. The ratio is often denoted "the" ¢ statistic. In
the regression output, the ¢ statistics for the constant and slope coefficient appear in the middle
column.

However, if the null hypothesis specifies some nonzero value of f3,, the more general expression
(3.50) has to be used and the ¢ statistic has to be calculated by hand. For example, consider again the
price inflation/wage inflation model (3.39) and suppose that the fitted model is (standard errors in
parentheses):

p = -121+ 0.82w (3.52)
(0.05) (0.10)

If we now investigate the hypothesis that price inflation is equal to wage inflation, our null
hypothesis is that the coefficient of w is equal to 1.0. The corresponding ¢ statistic is

b -B;  0.82-1.00 _

-1.80 (3.53)
s.e.(b,) 0.10

If there are, say, 20 observations in the sample, the number of degrees of freedom is 18 and the
critical value of ¢ at the 5 percent significance level is 2.101. The absolute value of our ¢ statistic is
less than this, so on this occasion we do not reject the null hypothesis. The estimate 0.82 is below our
hypothesized value 1.00, but not so far below as to exclude the possibility that the null hypothesis is
correct. One final note on reporting regression results: some writers place the ¢ statistic in parentheses
under a coefficient, instead of the standard error. You should be careful to check, and when you are
presenting results yourself, you should make it clear which you are giving.

The Reject/Fail-to-Reject Terminology

In this section it has been shown that you should reject the null hypothesis if the absolute
value of the ¢ statistic is greater than ., and that you fail to reject it otherwise. Why "fail
to reject", which is a clumsy expression? Would it not be better just to say that you
accept the hypothesis if the absolute value of the ¢ statistic is less than #..;?

The argument against using the term accept is that you might find yourself
"accepting" several mutually exclusive hypotheses at the same time. For instance, in the
price inflation/wage inflation example, you would not reject a null hypothesis
Hy: B, =0.9, or a null hypothesis Hy: B, = 0.8. Tt is logical to say that you would not
reject these null hypotheses, as well as the null hypothesis Hy: 8, = 1 discussed in the
text, but it makes little sense to say that you simultaneously accept all three hypotheses.
In the next section you will see that one can define a whole range of hypotheses which
would not be rejected by a given experimental result, so it would be incautious to pick
out one as being "accepted".
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Reporting the Results of t tests

Suppose you have a theoretical relationship

Y = B+ BXi+u

and your null and alternative hypotheses are Hy: B = BY, Hy: B, # BY. Given an

experimental estimate b, of 3,, the acceptance and rejection regions for the hypothesis for the
5 percent and 1 percent significance levels can be represented in general terms by the left part
of Figure 3.9.

The right side of the figure gives the same regions for a specific example, the price
inflation/wage inflation model, the null hypothesis being that 3, is equal to 1. The null
hypothesis will not be rejected at the 5 percent level if b, lies within 2.101 standard errors of
1, that is, in the range 0.79 to 1.21, and it will not be rejected at the 1 percent level if b, lies
within 2.878 standard deviations of 1, that is, in the range 0.71 to 1.29.

From Figure 3.9 it can be seen that there are three types of decision zone:

1. where b, is so far from the hypothetical 3, that the null hypothesis is rejected at both
the 5 percent and the 1 percent levels,

2. where b, is far enough from the hypothetical 3, for the null hypothesis to be rejected
at the 5 percent but not the 1 percent level,

3. where b, is close enough to the hypothetical B, for the null hypothesis not to be
rejected at either level.

From the diagram it can be verified that if the null hypothesis is rejected at the 1 percent
level, it is automatically rejected at the 5 percent level. Hence in case (1) it is only necessary
to report the rejection of the hypothesis at the 1 percent level. To report that it is rejected also
at the 5 percent level is superfluous and suggests that you are not aware of this. It would be a
bit like reporting that a certain high-jumper can clear two metres, and then adding that the
athlete can also clear one and a half metres.

In case (3), likewise, you only need to make one statement, in this case that the
hypothesis is not rejected at the 5 percent level. It automatically follows that it is not rejected
at the 1 percent level, and to add a statement to this effect as well would be like saying that
the high-jumper cannot clear one and a half metres, and also reporting that the athlete cannot
clear two metres either.

Only in case (2) is it necessary (and desirable) to report the results of both tests.

Note that if you find that you can reject the null hypothesis at the 5 percent level, you
should not stop there. You have established that the null hypothesis can be rejected at that
level, but there remains a 5 percent chance of a Type I error. You should also perform the
test at the 1 percent level. If you find that you can reject the null hypothesis at this level, this
is the outcome that you should report. The risk of a Type I error is now only 1 percent and
your conclusion is much more convincing. This is case (1) above. If you cannot reject at the
1 percent level, you have reached case (2) and you should report the results of both tests.
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PRICE INFLATION/

GENERAL CASE DECISION WAGE INFLATION
EXAMPLE
o Reject Ho at 1% level (and also at 5% level)
Bo + Lrit196XS.€. T-— == - === m - = mm e m e m o oo oo - 1.29
o Reject Ho at 5% level but not at 1% level
ﬁz + tcrit, 5%XS.8, T———-——--—-—-—----------——-—-————————————— - 1.21

320 + Do not reject Hy at 5% level (or at 1% level) 1 1.00

ﬁZO' tcrit,S%XS.e. B - 0.79

ﬂgo- lerit 196XS.€. T——————————----——-—-———————— - - 0.71
Reject Ho at 1% level (and also at 5% level)

Figure 3.9. Reporting the results of a ttest (no need to report
conclusions in parentheses)

p Values

The fifth column of the output above, headed p > |t |, provides an alternative approach to reporting
the significance of regression coefficients. The figures in this column give the probability of
obtaining the corresponding ¢ statistic as a matter of chance, if the null hypothesis Hy: 3, = 0 were true.
A p value of less than 0.01 means that the probability is less than 1 percent, which in turn means that
the null hypothesis would be rejected at the 1 percent level; a p value between 0.01 and 0.05 means
that the null hypothesis would be rejected at the 5 percent, but not the 1 percent level; and a p value of
0.05 or more means that it would not be rejected at the 5 percent level.

The p value approach is more informative than the 5 percent/1 percent approach, in that it gives
the exact probability of a Type I error, if the null hypothesis is true. For example, in the earnings
function output above, the p values for the intercept is 0.445, meaning that the probability of obtaining
a t statistic of 0.764 or greater, in absolute terms, on a pure chance basis is in this case 44.5 percent.
Hence the null hypothesis that the intercept is O would not be rejected at any sensible significance
level. In the case of the slope coefficient, the p value is 0.0000, meaning that the probability of
obtaining a ¢ statistic as large as 8.102, or larger, as a matter of chance is less than 0.005 percent.
Hence we would reject the null hypothesis that the slope coefficient is O at the 1 percent level. Indeed
we would reject it at the 0.1 percent level — see below. Choice between the p value approach and the 5
percent/1 percent approach appears to be entirely conventional. The medical literature uses p values,
but the economics literature generally uses 5 percent/1 percent.

0.1 Percent Tests

If the ¢ statistic is very high, you should check whether you can reject the null hypothesis at the 0.1
percent level. If you can, you should always report the result of the 0.1 percent test in preference to
that of the 1 percent test because it demonstrates that you are able to reject the null hypothesis with an
even smaller risk of a Type I error.
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Exercises
3.7 Give more examples of everyday instances in which decisions involving possible Type I and
Type 1l errors may arise.

3.8 Before beginning a certain course, 36 students are given an aptitude test. The scores, and the
course results (pass/fail) are given below:

student test course E student test course student test course
score result score result score result
1 30 fail 13 26 fail {25 9 fail
2 29 pass P14 43 pass 26 36 pass
3 33 fail P15 43 fail 27 61 pass
4 62 pass | 16 68 pass | 28 79 fail
5 59 fail 17 63 pass | 29 57 fail
6 63 pass 18 42 fail 30 46 pass
7 80 pass P19 51 fail 31 70 fail
8 32 fail P20 45 fail | 32 31 pass
9 60 pass | 21 22 fail | 33 68 pass
10 76 pass I 22 30 pass I 34 62 pass
11 13 fail P23 40 fail 35 56 pass
12

41 pass 24 26 fail 36 36 pass

Do you think that the aptitude test is useful for selecting students for admission to the course,
and if so, how would you determine the pass mark? (Discuss the trade-off between Type I and
Type II errors associated with the choice of pass-mark.)

3.9 A researcher hypothesizes that years of schooling, S, may be related to the number of siblings
(brothers and sisters), SIBLINGS, according to the relationship

S = ﬁl + ﬁzSIBLINGS +u

She is prepared to test the null hypothesis Hy: B, = 0 against the alternative hypothesis H,: 3, #
0 at the 5 percent and 1 percent levels. She has a sample of 60 observations. What should she
report

1. if b»=0.20, s.e.(by) = 0.07?
2. if by=-0.12, s.e.(b) = 0.07?
3. if by = 0.06, s.e.(b,) = 0.07?
4. if b, =0.20, s.e.(b) = 0.07?

3.10* A researcher with a sample of 50 individuals with similar education but differing amounts of
training hypothesizes that hourly earnings, FARNINGS, may be related to hours of training,
TRAINING, according to the relationship

EARNINGS = B, + B.TRAINING + u

He is prepared to test the null hypothesis Hy: B, = 0 against the alternative hypothesis H;: 3, #
0 at the 5 percent and 1 percent levels. What should he report
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if by = 0.30, s.e.(by) = 0.12?
if by = 0.55, s.e.(bs) = 0.12?
if by = 0.10, s.e.(b») = 0.12?
if by =-0.27, s.e.(by) = 0.12?

Ll o e

3.11 Perform a ¢ test on the slope coefficient and the intercept of the educational attainment function
fitted using your EAEF data set, and state your conclusions.

3.12 Perform a ¢ test on the slope coefficient and the intercept of the earnings function fitted using
your EAEF data set, and state your conclusions.

3.13* In Exercise 2.1, the growth rate of employment was regressed on the growth rate of GDP for a
sample of 25 OECD countries. Perform ¢ tests on the slope coefficient and the intercept and
state your conclusions.

3.8 Confidence Intervals

Thus far we have been assuming that the hypothesis preceded the empirical investigation. This is not
necessarily the case. Usually theory and experimentation are interactive, and the earnings function
regression provides a typical example. We ran the regression in the first place because economic
theory tells us to expect earnings to be affected by schooling. The regression result confirmed this
intuition since we rejected the null hypothesis 3, = 0, but we were then left with something of a
vacuum, since our theory is not strong enough to suggest that the true value of 3, is equal to some
specific number. However, we can now move in the opposite direction and ask ourselves the
following question: given our regression result, what hypotheses would be compatible with it?

Obviously a hypothesis B, = 1.073 would be compatible, because then hypothesis and
experimental result coincide. Also B, = 1.072 and 8, = 1.074 would be compatible, because the
difference between hypothesis and experimental result would be so small. The question is, how far
can a hypothetical value differ from our experimental result before they become incompatible and we
have to reject the null hypothesis?

We can answer this question by exploiting the previous analysis. From (3.50), we can see that
regression coefficient b, and hypothetical value 3, are incompatible if either

=P, t,. Of b=B ~t i (3.54)
s.e.(b,) s.e.(b,) '
that 1s, if either
by — ﬁz > S.e.(bz) X tgic Or by— ﬁz < —S.e.(bz) X Lerit (355)
that 1s, if either
b, — S.C.(bz) X Lerit > ﬁz or b+ S.C.(bz) X terit < ﬁz (356)

It therefore follows that a hypothetical 3, is compatible with the regression result if both
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bz— S.e.(bz) X toit S ﬁz or bz + S.e.(bz) X it 2 ﬁz (357)
that is, if 3, satisfies the double inequality
bz— S.e.(bz) X teit < ﬁz < bz + S.e.(bz) X erit (358)

Any hypothetical value of 3, that satisfies (3.58) will therefore automatically be compatible with
the estimate b, that is, will not be rejected by it. The set of all such values, given by the interval
between the lower and upper limits of the inequality, is known as the confidence interval for B,.

Note that the center of the confidence interval is b, itself. The limits are equidistant on either
side. Note also that, since the value of #.; depends upon the choice of significance level, the limits will
also depend on this choice. If the 5 percent significance level is adopted, the corresponding
confidence interval is known as the 95 percent confidence interval. If the 1 percent level is chosen,
one obtains the 99 percent confidence interval, and so on.

A Second Interpretation of a Confidence Interval

When you construct a confidence interval, the numbers you calculate for its upper and
lower limits contain random components that depend on the values of the disturbance
term in the observations in the sample. For example, in inequality (3.58), the upper limit
is

b2 + S.e.(b2) X Terit

Both b, and s.e.(b,) are partly determined by the values of the disturbance term, and
similarly for the lower limit. One hopes that the confidence interval will include the true
value of the parameter, but sometimes it will be so distorted by the random element that it
will fail to do so.

What is the probability that a confidence interval will capture the true value of the
parameter? It can easily be shown, using elementary probability theory, that, in the case
of a 95 percent confidence interval, the probability is 95 percent, provided that the model
is correctly specified and that the Gauss—Markov conditions are satisfied. Similarly, in
the case of a 99 percent confidence interval, the probability is 99 percent.

The estimated coefficient [for example, b, in inequality (3.58)] provides a point
estimate of the parameter in question, but of course the probability of the true value being
exactly equal to this estimate is infinitesimal. The confidence interval provides what is
known as an interval estimate of the parameter, that is, a range of values that will include
the true value with a high, predetermined probability. It is this interpretation that gives
the confidence interval its name (for a detailed and lucid discussion, see Wonnacott and
Wonnacott, 1990, Chapter 8).
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Since . is greater for the 1 percent level than for the 5 percent level, for any given number of
degrees of freedom, it follows that the 99 percent interval is wider than the 95 percent interval. Since
they are both centered on b,, the 99 percent interval encompasses all the hypothetical values of 3, in
the 95 percent confidence interval and some more on either side as well.

Example

In the earnings function output above, the coefficient of S was 1.073, its standard error was 0.132, and
the critical value of r at the 5 percent significance level was about 1.97. The corresponding 95 percent
confidence interval is therefore

1.073 -0.132x1.97 < B, < 1.073 + 0.132x 1.97 (3.59)
that is,
0.813 < B, < 1.333 (3.60)

We would therefore reject hypothetical values above 1.333 and below 0.813. Any hypotheses within
these limits would not be rejected, given the regression result. This confidence interval actually
appears as the final column in the output above. However, this is not a standard feature of a regression
application, so you usually have to calculate the interval yourself.

Exercises

3.14 Calculate the 99 percent confidence interval for 3, in the earnings function example (b, = 1.073,
s.e.(by) = 0.132), and explain why it includes some values not included in the 95 percent
confidence interval calculated in the previous section.

3.15 Calculate the 95 percent confidence interval for the slope coefficient in the earnings function
fitted with your EAEF data set.

3.16* Calculate the 95 percent confidence interval for 3 in the price inflation/wage inflation example:

p=-121+ 0.82w
(0.05) (0.10)

What can you conclude from this calculation?

3.9 One-Tailed t Tests

In our discussion of ¢ tests, we started out with our null hypothesis Hy: 3, = ﬁ;) and tested it to see
whether we should reject it or not, given the regression coefficient b,. If we did reject it, then by

implication we accepted the alternative hypothesis H;: 8, # By .
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Thus far the alternative hypothesis has been merely the negation of the null hypothesis. However,
if we are able to be more specific about the alternative hypothesis, we may be able to improve the
testing procedure. We will investigate three cases: first, the very special case where there is only one

conceivable alternative true value of f3,, which we will denote [3; ; second, where, if f3, is not equal to

ﬁg , it must be greater than ﬁg ; and third, where, if 3, is not equal to ﬁg , it must be less than ﬁg .

Ho: B2 = B3, Hi: Bo= B,

In this case there are only two possible values of the true coefficient of X, 8y and B,. For sake of

argument we will assume for the time being that 3, is greater than ﬁ;) .

Suppose that we wish to test Hy at the 5 percent significance level, and we follow the usual
procedure discussed earlier in the chapter. We locate the limits of the upper and lower 2.5 percent
tails under the assumption that Hy is true, indicated by A and B in Figure 3.10, and we reject H, if the
regression coefficient b; lies to the left of A or to the right of B.

Now, if b, does lie to the right of B, it is more compatible with H, than with Hy; the probability of
it lying to the right of B is greater if H, is true than if H, is true. We should have no hesitation in
rejecting Hy in favor of H;.

However, if b, lies to the left of A, the test procedure will lead us to a perverse conclusion. It tells
us to reject Hy in favor of H;, even though the probability of b, lying to the left of A is negligible if H,
is true. We have not even drawn the probability density function that far for H,. If such a value of b,
occurs only once in a million times when H, is true, but 2.5 percent of the time when H, is true, it is
much more logical to assume that Hy is true. Of course once in a million times you will make a
mistake, but the rest of the time you will be right.

Hence we will reject H only if b, lies in the upper 2.5 percent tail, that is, to the right of B. We
are now performing a one-tailed test, and we have reduced the probability of making a Type I error to
2.5 percent. Since the significance level is defined to be the probability of making a Type I error, it is
now also 2.5 percent.

As we have seen, economists usually prefer 5 percent and 1 percent significance tests, rather than
2.5 percent tests. If you want to perform a 5 percent test, you move B to the left so that you have 5

probability density
function of bo

A B B B be

Figure 3.10. Distribution of b, under Hy, and H,
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percent of the probability in the tail and the probability of making a Type I error is increased to 5
percent. (Question: why would you deliberately choose to increase the probability of making a Type I
error? Answer, because at the same time you are reducing the probability of making a Type II error,
that is, of not rejecting the null hypothesis when it is false. Most of the time your null hypothesis is
that the coefficient is 0, and you are trying to disprove this, demonstrating that the variable in question
does have an effect. In such a situation, by using a one-tailed test, you reduce the risk of not rejecting
a false null hypothesis, while holding the risk of a Type I error at 5 percent.)

If the standard deviation of b, is known (most unlikely in practice), so that the distribution is

normal, B will be z standard deviations to the right of 8;, where z is given by A(z) = 0.9500 in Table

A.1. The appropriate value of z is 1.64. If the standard deviation is unknown and has been estimated
as the standard error of b,, you have to use a ¢ distribution: you look up the critical value of ¢ in Table
A.2 for the appropriate number of degrees of freedom in the column headed 5 percent.

Similarly, if you want to perform a 1 percent test, you move B to the point where the right tail
contains 1 percent of the probability. Assuming that you have had to calculate the standard error of b,
from the sample data, you look up the critical value of ¢ in the column headed 1 percent.

We have assumed in this discussion that 3, is greater than ;. Obviously, if it is less than S,

we should use the same logic to construct a one-tailed test, but now we should use the left tail as the
rejection region for Hy and drop the right tail.

The Power of a Test

In this particular case we can calculate the probability of making a Type II error, that is, of

accepting a false hypothesis. Suppose that we have adopted a false hypothesis Hy: 8, = B, and that

an alternative hypothesis H: 8, = B, is in fact true. If we are using a two-tailed test, we will fail to
reject Hy if b, lies in the interval AB in Figure 3.11. Since H, is true, the probability of b, lying in that
interval is given by the area under the curve for H, to the left of B, the lighter shaded area in the
Figure. If this probability is denoted 7y, the power of the test, defined to be the probability of not
making a Type Il error, is (1 — 7). Obviously, you have a trade-off between the power of the test and

probability density
function of bo

A B B B be

Figure 3.11. Probability of not rejecting Hy when it is false, two-tailed test
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the significance level. The higher the significance level, the further B will be to the right, and so the
larger Y will be, so the lower the power of the test will be.

In using a one-tailed instead of a two-tailed test, you are able to obtain greater power for any level
of significance. As we have seen, you would move B in Figure 3.11 to the left if you were performing
a one-tailed test at the 5 percent significance level, thereby reducing the probability of accepting H, if
it happened to be false.

Hy: ﬂ2= ﬂS,H1:ﬂz> ﬂé’

We have discussed the case in which the alternative hypothesis involved a specific hypothetical value

B, , with B, greater than 3 . Clearly, the logic that led us to use a one-tailed test would still apply

even if H, were more general and merely asserted that 8, > B5 , without stating any particular value.
We would still wish to eliminate the left tail from the rejection region because a low value of b, is
more probable under Hy: 3, = ﬁg than under H;: 3, > ﬁg , and this would be evidence in favor of H,,
not against it. Therefore, we would still prefer a one-tailed ¢ test, using the right tail as the rejection
region, to a two-tailed test. Note that, since 3, is not defined, we now have no way of calculating the

power of such a test. However, we can still be sure that, for any given significance level, the power of
a one-tailed test will be greater than that of the corresponding two-tailed test.

Hy: ﬂ2= ﬂS,H1:ﬂz< ﬂé’

Similarly if the alternative hypothesis were Hy: B, < By, we would prefer a one-tailed test using the

left tail as the rejection region.

Justification of the Use of a One-Tailed Test

The use of a one-tailed test has to be justified beforehand on the grounds of theory, common sense, or
previous experience. When stating the justification, you should be careful not to exclude the
possibility that the null hypothesis is true. For example, suppose that you are relating household
expenditure on clothing to household income. You would of course expect a significant positive
effect, given a large sample. But your justification should not be that, on the basis of theory and
commonsense, the coefficient should be positive. This is too strong, for it eliminates the null
hypothesis of no effect, and there is nothing to test. Instead, you should say that, on the basis of theory
and common sense, you would exclude the possibility that income has a negative effect. This then
leaves the possibility that the effect is 0 and the alternative that it is positive.

One-tailed tests are very important in practice in econometrics. As we have seen, the usual way
of establishing that an explanatory variable really does influence a dependent variable is to set up the
null hypothesis Hy: B, = 0 and try to refute it. Very frequently, our theory is strong enough to tell us
that, if X does influence Y, its effect will be in a given direction. If we have good reason to believe
that the effect is not negative, we are in a position to use the alternative hypothesis H;: 3, > 0 instead
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of the more general H,: 3, #0. This is an advantage because the critical value of ¢ for rejecting H is
lower for the one-tailed test, so it is easier to refute the null hypothesis and establish the relationship.

Examples

In the earnings function regression, there were 568 degrees of freedom and the critical value of ¢, using
the 0.1 percent significance level and a two-tailed test, is approximately 3.31. If we take advantage of
the fact that it is reasonable to expect income not to have a negative effect on earnings, we could use a
one-tailed test and the critical value is reduced to approximately 3.10. The ¢ statistic is in fact equal to
8.10, so in this case the refinement makes no difference. The estimated coefficient is so large relative
to its standard error that we reject the null hypothesis regardless of whether we use a two-tailed or a
one-tailed test, even using a 0.1 percent test.

In the price inflation/wage inflation example, exploiting the possibility of using a one-tailed test
does make a difference. The null hypothesis was that wage inflation is reflected fully in price inflation
and we have Hy: ;= 1. The main reason why the types of inflation may be different is that
improvements in labor productivity may cause price inflation to be lower than wage inflation.
Certainly improvements in productivity will not cause price inflation to be greater than wage inflation
and so in this case we are justified in ruling out 8, > 1. We are left with Hy: B, =1 and H;: B, < 1.
Given a regression coefficient 0.82 and a standard error 0.10, the ¢ statistic for the null hypothesis is —
1.80. This was not high enough, in absolute terms, to cause H, to be rejected at the 5 percent level
using a two-tailed test (critical value 2.10). However, if we use a one-tailed test, as we are entitled to,
the critical value falls to 1.73 and we can reject the null hypothesis. In other words, we can conclude
that price inflation is significantly lower than wage inflation.

Exercises

3.17 Explain whether it would have been possible to perform one-tailed tests instead of two-tailed
tests in Exercise 3.9. If you think that one-tailed tests are justified, perform them and state
whether the use of a one-tailed test makes any difference.

3.18* Explain whether it would have been possible to perform one-tailed tests instead of two-tailed
tests in Exercise 3.10. If you think that one-tailed tests are justified, perform them and state
whether the use of a one-tailed test makes any difference.

3.19* Explain whether it would have been possible to perform one-tailed tests instead of two-tailed
tests in Exercise 3.11. If you think that one-tailed tests are justified, perform them and state
whether the use of a one-tailed test makes any difference.

3.10 The FTest of Goodness of Fit

Even if there is no relationship between Y and X, in any given sample of observations there may
appear to be one, if only a faint one. Only by coincidence will the sample covariance be exactly equal
to 0. Accordingly, only by coincidence will the correlation coefficient and R” be exactly equal to 0. So
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how do we know if the value of R* for the regression reflects a true relationship or if it has arisen as a
matter of chance?
We could in principle adopt the following procedure. Suppose that the regression model is

Y,' = ﬁl + ﬁzX,' + u; (361)

We take as our null hypothesis that there is no relationship between Y and X, that is, Hy: 3, = 0.
We calculate the value that would be exceeded by R as a matter of chance, 5 percent of the time. We
then take this figure as the critical level of R* for a 5 percent significance test. If it is exceeded, we
reject the null hypothesis if favor of Hy: 3, #0.

Such a test, like the ¢ test on a coefficient, would not be foolproof. Indeed, at the 5 percent
significance level, one would risk making a Type I error (rejecting the null hypothesis when it is in
fact true) 5 percent of the time. Of course you could cut down on this risk by using a higher
significance level, for example, the 1 percent level. The critical level of R* would then be that which
would be exceeded by chance only 1 percent of the time, so it would be higher than the critical level
for the 5 percent test.

How does one find the critical level of R* at either significance level? Well, there is a small
problem. There is no such thing as a table of critical levels of R*. The traditional procedure is to use
an indirect approach and perform what is known as an F test based on analysis of variance.

Suppose that, as in this case, you can decompose the variance of the dependent variable into
"explained" and "unexplained" components using (2.46):

Var(Y) = Var( Y ) + Var(e) (3.62)

Using the definition of sample variance, and multiplying through by n, we can rewrite the
decomposition as

i(n—7)2=i(ﬁ—7)z+ie§ (3.63)
i=1 i=1 i=1

(Remember that e is 0 and that the sample mean of Y is equal to the sample mean of Y.)

The left side is 7SS, the total sum of squares of the values of the dependent variable about its
sample mean. The first term on the right side is ESS, the explained sum of squares, and the second
term is RSS, the unexplained, residual sum of squares:

TSS = ESS + RSS (3.64)

The F statistic for the goodness of fit of a regression is written as the explained sum of squares, per
explanatory variable, divided by the residual sum of squares, per degree of freedom remaining:

Fe ESS /(k-1)

= (3.65)
RSS /(n—k)

where k is the number of parameters in the regression equation (intercept and k — 1 slope coefficients).
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By dividing both the numerator and the denominator of the ratio by 7SS, this F' statistic may
equivalently be expressed in terms of R*:

Fe (ESS/TSS)I(k-1) _ R*I(k—1)

= = > (3.66)
(RSS/TSS)/(n—k) (A—-R)/(n—k)
In the present context, & is 2, so (3.66) becomes
2
R (3.67)

T U=R)/n-2)

Having calculated F from your value of R2, you look up Fy, the critical level of F, in the
appropriate table. If F is greater than F,;, you reject the null hypothesis and conclude that the
"explanation" of Y is better than is likely to have arisen by chance.

Table A.3 gives the critical levels of F at the 5 percent, 1 percent and 0.1 percent significance
levels. In each case the critical level depends on the number of explanatory variables, k — 1, which is
read from along the top of the table, and the number of degrees of freedom, n — k, which is read off
down the side. In the present context, we are concerned with simple regression analysis, k is 2, and we
should use the first column of the table.

In the earnings function example, R* was 0.1036. Since there were 570 observations, the F
statistic is equal to R*/[(1 — R*)/568] = 0.1036 / [0.8964/568] = 65.65. At the 0.1 percent significance
level, the critical level of F for 1 and 500 degrees of freedom (looking at the first column, row 500) is
10.96. The critical value for 1 and 568 degrees of freedom must be lower, so we have no hesitation in
rejecting the null hypothesis in this particular example. In other words, the underlying value of R is
so high that we reject the suggestion that it could have arisen by chance. In practice the F statistic is
always computed for you, along with R*, so you never actually have to use (3.66) yourself.

Why do people bother with this indirect approach? Why not have a table of critical levels of R*?
The answer is that the F table is useful for testing many forms of analysis of variance, of which R is
only one. Rather than have a specialized table for each application, it is more convenient (or, at least,
it saves a lot of paper) to have just one general table, and make transformations like (3.66) when
necessary.

Of course you could derive critical levels of R” if you were sufficiently interested. The critical
level of R* would be related to the critical level of F by

R2 /(k -1
it = Mtk - 1) (3.68)
(=R ) /(n—k)
which yields
2 = kDFn (3.69)
(k=1F,., +(n—k)

In the earnings function example, the critical value of F at the 1 percent significance level was
approximately 11.38. Hence in this case, with k = 2,
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R = 38 6000 (3.70)
11.38+568

Although it is low, our R” is greater than 0.020, so a direct comparison of R” with its critical value
confirms the conclusion of the F test that we should reject the null hypothesis.

Exercises

3.20 In Exercise 2.1, in the regression of employment growth rates on growth rates of GDP using a
sample of 25 OECD countries, R* was 0.5909. Calculate the corresponding F statistic and
check that it is equal to 33.22, the value printed in the output. Perform the F test at the 5
percent, 1 percent, and 0.1 percent significance levels. Is it necessary to report the results of the
tests at all three levels?

3.21 Similarly, calculate the F statistic from the value of R* obtained in the earnings function fitted
using your EAEF data set and check that it is equal to the value printed in the output. Perform
an appropriate F test.

3.11 Relationship between the F Test of Goodness of Fit and the t Test on the Slope
Coefficient in Simple Regression Analysis

In the context of simple regression analysis (and only simple regression analysis) the F test on R* and
the two-tailed 7 test on the slope coefficient both have Hy: 8, = 0 as the null hypothesis and H;: B, # 0
as the alternative hypothesis. This gives rise to the possibility that they might lead to different
conclusions. Fortunately, they are in fact equivalent. The F statistic is equal to the square of the ¢
statistic, and the critical value of F, at any given significance level, is equal to the square of the critical
value of #. Starting with the definition of F in (3.67),

Var(Y)
Fe R’ B Var(Y)
- d
(1-R*)/(n~2) {I_Var(Y)}/(n_z)
Var(Y)
Var(Y)
_ Var(Y) _ Var(Y) 3.71)
Var(Y)— Var(Y) fn=2) Var(e)/(n—2)
Var(Y)
_ Var(+b,X) _byVar(X) by by _p

1 O 2 _ ls2 i - [s.e.(bz)]2 B
{”gei }/(n ? n" nVar(X)
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The proof that the critical value of F is equal to the critical value of ¢ for a two-tailed ¢ test is more
complicated and will be omitted. When we come to multiple regression analysis, we will see that the F
test and the ¢ tests have different roles and different null hypotheses. However, in simple regression
analysis the fact that they are equivalent means that there is no point in performing both. Indeed, you
would look ignorant if you did. Obviously, provided that it is justifiable, a one-tailed ¢ test would be
preferable to either.

Exercises

3.22 Verify that the F statistic in the earnings function regression run by you using your EAEF data
set is equal to the square of the 7 statistic for the slope coefficient, and that the critical value of F
at the 1 percent significance level is equal to the square of the critical value of ¢.

3.23 In Exercise 2.6 both researchers obtained values of R” equal to 0.10 in their regressions. Was
this a coincidence?



MULTIPLE REGRESSION
ANALYSIS

In this chapter least squares regression analysis is generalized to cover the case in which there are
several or many explanatory variables in the regression model, rather than just one. Two new topics
are discussed. One is the problem of discriminating between the effects of different explanatory
variables, a problem that, when particularly severe, is known as multicollinearity. The other is the
evaluation of the joint explanatory power of the independent variables, as opposed to their individual
marginal effects.

4.1 lllustration: A Model with Two Explanatory Variables

Multiple regression analysis is an extension of simple regression analysis to cover cases in which the
dependent variable is hypothesized to depend on more than one explanatory variable. Much of the
analysis will be a straightforward extension of the simple regression model, but we will encounter two
new problems. First, when evaluating the influence of a given explanatory variable on the dependent
variable, we now have to face the problem of discriminating between its effects and the effects of the
other explanatory variables. Second, we shall have to tackle the problem of model specification.
Frequently a number of variables might be thought to influence the behavior of the dependent
variable; however, they might be irrelevant. We shall have to decide which should be included in the
regression equation and which should be excluded. The second problem will be discussed in Chapter
7. In this chapter, we will assume that the model specification is correct. For much of it, we will
confine ourselves to the basic case where there are only two explanatory variables.

We will begin by considering an example, the determinants of earnings. We will extend the
earlier model to allow for the possibility that earnings are influenced by cognitive ability as well as
education and assume that the true relationship can be expressed as

EARNINGS = B, + -5 + B:ASVABC + u, 4.1)

where EARNINGS is hourly earnings, S is years of schooling (highest grade completed), ASVABC is
composite score on the cognitive tests in the Armed Services Vocational Aptitude Battery (see
Appendix B for a description), and u is a disturbance term. This model is still of course a great
simplification, both in terms of the explanatory variables included in the relationship and in terms of
its mathematical specification.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 25.04.01.
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o D + 825+ BASVABC + u

B1 + =S + BsASVABC

combined effect of
Sand ASVABC

I pure ASVABC effect

/ .............................. ﬂ1 + ﬂgs
pure S effect

ASVABC

EARNINGS

S

Figure 4.1. True model with two explanatory variables: earnings
as a function of schooling and ability

To illustrate the relationship geometrically, one needs a three-dimensional diagram with separate
axes for EARNINGS, S, and ASVABC as in Figure 4.1. The base of Figure 4.1 shows the axes for S
and ASVABC, and, if one neglects the effect of the disturbance term for the moment, the tilted plane
above it shows the value of EARNINGS corresponding to any (S, ASVABC) combination, measured by
the vertical height of the plane above the base at that point. Since earnings may be expected to
increase with both schooling and ability, the diagram has been drawn on the assumption that 3, and f3;
are both positive. Literally, the intercept B gives the predicted earnings for 0 schooling and 0 ability
score. However, such an interpretation would be dangerous because the ASVABC score is scaled in
such a way as to make it impossible to score less than 20. Furthermore, there was nobody with no
schooling in the NLSY data set. Indeed very few individuals failed to complete eight years of
schooling. Mathematically (4.1) implies that, if ASVABC were 0, for any positive S, earnings would
be equal to B + .S, the increase f3,S being marked "pure S effect” in the figure. Keeping S at 0, the
equation implies that for any positive value of ASVABC, earnings would be equal to 3; + B3ASVABC,
the increase B:ASVABC being marked "pure ASVABC effect". The combined effect of schooling and
ability, B,S + B;ASVABC, is also indicated.

We have thus far neglected the disturbance term. If it were not for the presence of this in (4.1),
the values of EARNINGS in a sample of observations on EARNINGS, S, and ASVABC would lie
exactly on the tilted plane and it would be a trivial matter to deduce the exact values of 3;, ., and f3;
(not trivial geometrically, unless you are a genius at constructing three-dimensional models, but easy
enough algebraically).

The disturbance term causes the actual value of earnings to be sometimes above and sometimes
below the value indicated by the tilted plane. Consequently one now has a three-dimensional
counterpart to the two-dimensional problem illustrated in Figure 2.2. Instead of locating a line to fit a
two-dimensional scatter of points, we now have to locate a plane to fit a three-dimensional scatter.
The equation of the fitted plane will be
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EARNINGS = b, + b»S + b;ASVABC 4.2)

and its location will depend on the choice of by, by, and bs, the estimates of 3;, 3, and B;, respectively.
Using EAEF Data Set 21, we obtain the following regression output:

. reg EARNINGS S ASVABC

Source | Ss at MS Number of obs = 570
————————— o m s s m e m e m - F( 2, 567) = 39.98
Model | 4745.74965 2 2372.87483 Prob > F = 0.0000
Residual | 33651.2874 567 59.3497133 R-squared = 0.1236
————————— e Adj R-squared = 0.1205
Total | 38397.0371 569 67.4816117 Root MSE = 7.7039
EARNINGS | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ el
S | .7390366 .1606216 4.601 0.000 .4235506 1.054523

ASVABC | .1545341 .0429486 3.598 0.000 .0701764 .2388918
_cons | -4.624749 2.0132 -2.297 0.022 -8.578989 -.6705095

The equation should be interpreted as follows. For every additional grade completed, holding the
ability score constant, hourly earnings increase by $0.74. For every point increase in the ability score,
holding schooling constant, earnings increase by $0.15. The constant has no meaningful
interpretation. Literally, it suggests that a respondent with 0 years of schooling (no respondent had
less than six) and an ASVABC score of 0 (impossible) would earn minus $4.62 per hour.

4.2 Derivation and Interpretation of the Multiple Regression Coefficients

As in the simple regression case, we choose the values of the regression coefficients to make the fit as
good as possible in the hope that we will obtain the most satisfactory estimates of the unknown true
parameters. As before, our definition of goodness of fit is the minimization of RSS, the sum of squares
of the residuals:

RSS=Y e}, (4.3)
i=1

where e; is the residual in observation i, the difference between the actual value Y; in that observation

and the value Yl predicted by the regression equation:
Y, =b +b,X,, +b, X5, (4.4)
eizn_ﬁzn_bl_bzxzi_b3x3i (4.5)

Note that the X variables now have two subscripts. The first identifies the X variable and the second
identifies the observation.
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Using (4.5), we can write

RSS = e} = (¥, b —b, X, b, X,)’° (4.6)
i=1 i=1
The first-order conditions for a minimum, ORSS =0, IRSS =0, and IRSS =0, yield the
ob, ob, ob;,
following equations:
ORSS c
=-2) (Y. —b,—b,X,, —b;X;,)=0 4.7
% Z( | =0y X5, =X y) )
ORSS c
=2 X,.(Y, —-b, -b,X,, —b;X;,)=0 4.8
abz ; 21( i 1 242§ 3 31) ( )
ORSS <
=-2» XY, -b, —b,X,, —b;X5;)=0 4.9
8193 ; 3 1 24%2 3443 ) )

Hence we have three equations in the three unknowns, by, b,, and b;. The first can easily be
rearranged to express b; in terms of by, b3, and the data on Y, X,, and X;:

b =Y -b,X, —b;X;. (4.10)

Using this expression and the other two equations, with a little work one can obtain the following
expression for by:

b = Cov(X,,Y)Var(X;)—Cov(X;,Y)Cov(X,, X5)

: g @.11)
Var(X,)Var(X;) —[Cov(X,, X;)]

A parallel expression for b; can be obtained by interchanging X, and X3 in (4.11).

The intention of this discussion is to press home two basic points. First, the principles behind the
derivation of the regression coefficients are the same for multiple regression as for simple regression.
Second, the expressions, however, are different, and so you should not try to use expressions derived
for simple regression in a multiple regression context.

The General Model

In the preceding example, we were dealing with only two explanatory variables. When there are more
than two, it is no longer possible to give a geometrical representation of what is going on, but the
extension of the algebra is in principle quite straightforward.

We assume that a variable Y depends on k — 1 explanatory variables X, ..., X; according to a true,
unknown relationship
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Whatever Happened to X;?

You may have noticed that X; is missing from the general regression model
Y,- :ﬁl +[)’2X2,~+ +ﬁka,' + u;

Why so? The reason is to make the notation consistent with that found in texts using
linear algebra (matrix algebra), and your next course in econometrics will almost
certainly use such a text. For analysis using linear algebra, it is essential that every term
on the right side of the equation should consist of the product of a parameter and a
variable. When there is an intercept in the model, as here, the anomaly is dealt with by
writing the equation

Yi = ﬁlXIi + ﬁZXZi + ...+ ﬁkai + U;

where X;; is equal to 1 in every observation. In analysis using ordinary algebra, there is
usually no point in introducing X; explicitly, and so it has been suppressed. The one
occasion in this text where it can help is in the discussion of the dummy variable trap in

Chapter 6.
Yi= i+ BoXoi + ... + BiXi + u;. (4.12)
Given a set of n observations on Y, X», ..., X;, we use least squares regression analysis to fit the
equation
Y, =b, +b, X + ..+ b X (4.13)

This again means minimizing the sum of the squares of the residuals, which are given by

e, =Y, -V, =Y, —b —b, Xy, —..—b, X, (4.14)
(4.14) is the generalization of (4.5). We now choose b, ..., b; so as to minimize RSS, the sum of the
squares of the residuals, Zeiz . We obtain £ first order conditions E)g;S =0, ..., a;)SS =0, and
i=1 1 k

these provide k equations for solving for the k£ unknowns. It can readily be shown that the first of
these equations yields a counterpart to (4.10) in the case with two explanatory variables:

by=Y -b,X,—..—b,X,. (4.15)

The expressions for b,, ..., by become very complicated and the mathematics will not be presented
explicitly here. The analysis should be done with matrix algebra.
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Interpretation of the Multiple Regression Coefficients

Multiple regression analysis allows one to discriminate between the effects of the explanatory
variables, making allowance for the fact that they may be correlated. The regression coefficient of
each X variable provides an estimate of its influence on Y, controlling for the effects of all the other X
variables.

This can be demonstrated in two ways. One is to show that the estimators are unbiased, if the
model is correctly specified and the Gauss—Markov conditions are fulfilled. We shall do this in the
next section for the case where there are only two explanatory variables. A second method is to run a
simple regression of ¥ on one of the X variables, having first purged both Y and the X variable of the
components that could be accounted for by the other explanatory variables. The estimate of the slope
coefficient and its standard error thus obtained are exactly the same as in the multiple regression. It
follows that a scatter diagram plotting the purged Y against the purged X variable will provide a valid
graphical representation of their relationship that can be obtained in no other way. This result will not
be proved but it will be illustrated using the earnings function in Section 4.1:

EARNINGS = f3, + .S + BsASVABC + wu. (4.16)

Suppose that we are particularly interested in the relationship between earnings and schooling and that
we would like to illustrate it graphically. A straightforward plot of EARNINGS on S, as in Figure 2.8,
would give a distorted view of the relationship because ASVABC is positively correlated with S. As a
consequence, as S increases, (1) EARNINGS will tend to increase, because f3, is positive; (2) ASVABC
will tend to increase, because S and ASVABC are positively correlated; and (3) EARNINGS will
receive a boost due to the increase in ASVABC and the fact that 5 is positive. In other words, the
variations in EARNINGS will exaggerate the apparent influence of S because in part they will be due
to associated variations in ASVABC. As a consequence, in a simple regression the estimator of 3, will
be biased. We will investigate the bias analytically in Section 7.2.

In this example, there is only one other explanatory variable, ASVABC. To purge EARNINGS and
S of their ASVABC components, we first regress them on ASVABC:

EARNINGS = ¢, + ¢,ASVABC (4.17)
S=d, +d,ASVABC (4.18)

We then subtract the fitted values from the actual values:
EEARN = EARNINGS — EARNINGS (4.19)

ES=S-S (4.20)

The purged variables EEARN and ES are of course just the residuals from the regressions (4.17)
and (4.18). We now regress EEARN on ES and obtain the output shown.
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reg EEARN ES

Source | SS af MS Number of obs = 570
————————— e F( 1, 568) = 21.21
Model | 1256.44239 1 1256.44239 Prob > F = 0.0000
Residual | 33651.2873 568 59.2452241 R-squared = 0.0360
————————— e Adj R-squared = 0.0343
Total | 34907.7297 569 61.3492613 Root MSE = 7.6971
EEARN | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
ES | .7390366 .1604802 4.605 0.000 .4238296 1.054244

_cons | -5.99e-09 .3223957 0.000 1.000 -.6332333 .6332333

You can verify that the coefficient of ES is identical to that of S in the multiple regression in
Section 4.1. Figure 4.2 shows the regression line in a scatter diagram. The dotted line in the figure is
the regression line from a simple regression of EARNINGS on S, shown for comparison.

The estimate of the intercept in the regression uses a common convention for fitting very large
numbers or very small ones into a predefined field. e +n indicates that the coefficient should be
multiplied by 10”. Similarly e —n indicates that it should be multiplied by 10™. Thus in this regression
the intercept is effectively 0.

70 1
EEARN
60
50 |

40 -

30 1

20

-20 -

Figure 4.2. Regression of EARNINGS residuals on S residuals
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Exercises

4.1 The result of fitting an educational attainment function, regressing S on ASVABC, SM, and SF,
years of schooling (highest grade completed) of the respondent’s mother and father,
respectively, using EAEF Data Set 21 is shown below. Give an interpretation of the regression
coefficients.

. reg S ASVABC SM SF

Source | SS at MS Number of obs = 570
————————— o m s s m e m e m - F( 3, 566) = 110.83
Model | 1278.24153 3 426.080508 Prob > F = 0.0000
Residual | 2176.00584 566 3.84453329 R-squared = 0.3700
————————— e Adj R-squared = 0.3667
Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

S | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ ol
ASVABC | .1295006 .0099544 13.009 0.000 .1099486 .1490527
SM | .069403 .0422974 1.641 0.101 -.013676 .152482

SF | .1102684 .0311948 3.535 0.000 .0489967 .1715401

cons | 4.914654 .5063527 9.706 0.000 3.920094 5.909214

4.2  Fit an educational attainment function parallel to that in Exercise 4.1, using your EAEF data set,
and give an interpretation of the coefficients.

4.3 Fit an earnings function parallel to that in Section 4.1, using your FAEF data set, and give an
interpretation of the coefficients.

4.4 Using your EAEF data set, make a graphical representation of the relationship between S and
SM using the technique described above, assuming that the true model is as in Exercise 4.2. To
do this, regress S on ASVABC and SF and save the residuals. Do the same with SM. Plot the §
and SM residuals. Also regress the former on the latter, and verify that the slope coefficient is
the same as that obtained in Exercise 4.2.

4.5* Explain why the intercept in the regression of EEARN on ES is equal to O.

4.3 Properties of the Multiple Regression Coefficients

As in the case of simple regression analysis, the regression coefficients should be thought of as special
kinds of random variables whose random components are attributable to the presence of the
disturbance term in the model. Each regression coefficient is calculated as a function of the values of
Y and the explanatory variables in the sample, and Y in turn is determined by the explanatory variables
and the disturbance term. It follows that the regression coefficients are really determined by the
values of the explanatory variables and the disturbance term and that their properties depend critically
upon the properties of the latter.

We shall continue to assume that the Gauss—Markov conditions are satisfied, namely (1) that the
expected value of u in any observation is 0, (2) that the population variance of its distribution is the
same for all observations, (3) that the population covariance of its values in any two observations is 0,
and (4) that it is distributed independently of any explanatory variable. The first three conditions are



MULTIPLE REGRESSION ANALYSIS 9

the same as for simple regression analysis and (4) is a generalization of its counterpart. For the time
being we shall adopt a stronger version of (4) and assume that the explanatory variables are
nonstochastic.

There are two further practical requirements. First, there must be enough data to fit the regression
line; that is, there must be at least as many (independent) observations as there are parameters to be
estimated. Second, as we shall see in Section 4.4, there must not be an exact linear relationship among
the explanatory variables.

Unbiasedness

We will first show that b, is an unbiased estimator of 3, in the case where there are two explanatory
variables. The proof can easily be generalized, using matrix algebra, to any number of explanatory
variables. As one can see from (4.11), b, is calculated as a function of X,, X3, and Y. Y in turn is
generated by X,, X3, and u. Hence b, depends in fact on the values of X,, X5 and u in the sample
(provided that you understand what is going on, you may skip the details of the mathematical
working):

_ Cov(X,,Y)Var(X;)—Cov(X;,Y)Cov(X,, X3)
- Var(X,)Var(X5) —[Cov(X ,, X 1)
_l{COV(Xz,[ﬁl +B,X, + B3 X5 +ul)Var(X;) }
A |-Cov(X5,[B, + B X, + By X5 +ul)Cov(X,, X5)
1 |[Cov(X,,B,)+Cov(X,,B,X,)+Cov(X,,B;X;)+Cov(X,,u)]Var(X;)
:X{—[COV(X3,[31)+C0V(X3,ﬁ2X2)+COV(X3,ﬁ3X3)+C0V(X3,M)]COV(X2,X3)}

b,

4.21)

where A is Var(X,)Var(X;) — [Cov(X,, X3)]2. Cov(Xa, B1) and Cov(X3, B)) are both 0, using Covariance
Rule 3, because f; is a constant. Cov(X,, 3,X>) is B,Var(X;), using Covariance Rule 2 and the fact that
Cov(Xa, X>) is the same as Var(X,). Similarly Cov(X3, B:X;) is B;Var(X;). Hence

1 {[ﬁzVar(X2)+ B;Cov(X,,X,)+Cov(X,,u)]Var(X,) }
, =—

A |~ [B,Cov(X,, X;)+ BsVar(X ) + Cov(X5,u)|Cov(X,, X ;)
1 B,Var(X,)Var(X;)+ B;Cov(X,, X;)Var(X;)+ Cov(X,,u)Var(X;)
A= B,[Cov(X,, X3)]2 — B;Var(X;)Cov(X,,X;)—Cov(X,,u)Cov(X,,X5)

:l{ﬁz (Var(X,)Var(X,) - [Cov(X,, X:)I) } @)

A [+ Cov(X,,u)Var(X ;) —Cov(X;,u)Cov(X,, X;)

=%[ﬂ2A +Cov(X,,u)Var(X,) — Cov(X;,u)Cov(X,, X,)]

=B, + % [Cov(X,,u)Var(X ;) —Cov(X,,u)Cov(X,, X5)]

Thus b, has two components: the true value 3, and an error component. If we take expectations, we
have
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E(b,) =B, + iVar(X3 YE[Cov(X,,u)]—- %COV(XZ , X3)E[Cov(X;,u)]
= [32

(4.23)

provided that X, and X3 are nonstochastic. (The proof that E[Cov(X,, u)] and E[Cov(Xj, u)] are O is
parallel to that for E[Cov(X, u)] being O in Chapter 3.)

Efficiency

The Gauss—Markov theorem proves that, for multiple regression analysis, as for simple regression
analysis, the ordinary least squares (OLS) technique yields the most efficient linear estimators, in the
sense that it is impossible to find other unbiased estimators with lower variances, using the same
sample information, provided that the Gauss—Markov conditions are satisfied. We will not attempt to
prove this theorem since matrix algebra is required.

Precision of the Multiple Regression Coefficients
We will investigate the factors governing the likely precision of the regression coefficients for the case
where there are two explanatory variables. Similar considerations apply in the more general case, but
with more than two variables the analysis becomes complex and one needs to switch to matrix algebra.
If the true relationship is
Y, = ﬁ] + ﬁzXz,' + ﬁ3X3l‘ + U;, (424)

and you fit the regression line

YAI- = b] + bzXz,' + b3X3,', (425)
using appropriate data, fz , the population variance of the probability distribution of b,, is given by

2
2 Gu 1
sz

= X 3
nVar(X,) 1- Fy,x,

(4.26)

where ¢ is the population variance of u and Iy x, 1s the correlation between X; and X,. A parallel

expression may be obtained for the population variance of bs, replacing Var(X,) with Var(X3).
From (4.26) you can see that, as in the case of simple regression analysis, it is desirable for n and

Var(X5) to be large and for o to be small. However, we now have the further term (I — r,?z x,) and

clearly it is desirable that the correlation between X, and X3 should be low.
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It is easy to give an intuitive explanation of this. The greater the correlation, the harder it is to
discriminate between the effects of the explanatory variables on Y, and the less accurate will be the
regression estimates. This can be a serious problem and it is discussed in the next section.

The standard deviation of the distribution of b, is the square root of the variance. As in the
simple regression case, the standard error of b, is the estimate of the standard deviation. For this we

need to estimate .. The variance of the residuals provides a biased estimator:

E[Var(e)]="=* 52 4.27)
n

where k is the number of parameters in the regression equation. However, we can obtain an unbiased
2

u

estimator, s, by neutralizing the bias:

2 n
S =

p Var(e) (4.28)

n—

The standard error is then given by

2
s.e.(by) = all X 12
nVar(X,) 1- X, X,

(4.29)

The determinants of the standard error will be illustrated by comparing them in earnings functions
fitted to two subsamples of the respondents in EAEF Data Set 21, those who reported that their wages
were set by collective bargaining and the remainder. Regression output for the two subsamples is
shown below. In Stata, subsamples may be selected by adding an “if” expression to a command.
COLLBARG is a variable in the data set defined to be 1 for the collective bargaining subsample and 0

for the others. Note that in tests for equality, Stata requires the = sign to be duplicated.

reg EARNINGS S ASVABC if COLLBARG==1

Source | Ss at MS Number of obs = 63
————————— bm e F( 2, 60) = 2.58
Model | 172.902083 2 86.4510417 Prob > F = 0.0844
Residual | 2012.88504 60 33.5480841 R-squared = 0.0791
————————— e Adj R-squared = 0.0484
Total | 2185.78713 62 35.2546311 Root MSE = 5.7921
EARNINGS | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ el
S | -.3872787  .3530145 -1.097  0.277 -1.093413 .3188555
ASVABC | .2309133 .1019211 2.266 0.027 .0270407 .4347858
_cons | 8.291716 4.869209 1.703 0.094 -1.448152 18.03158
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reg EARNINGS S ASVABC if COLLBARG==

12

Source | SS af MS Number of obs = 507
————————— o e F( 2, 504) = 40.31
Model | 4966 .96516 2 2483.48258 Prob > F = 0.0000
Residual | 31052.2066 504 61.6115211 R-squared = 0.1379
————————— b e Adj R-squared = 0.1345
Total | 36019.1718 506 71.184134 Root MSE 7.8493
EARNINGS | Coef Std. Err t P>|t] [95% Conf. Intervall
_________ o o o oo o e e el
S | .8891909 .1741617 5.106 0.000 .5470186 1.231363

ASVABC | .1398727 .0461806 3.029 0.003 .0491425 .2306029
_cons | -6.100961 2.15968 -2.825 0.005 -10.34404 -1.857877

The standard error of the coefficient of S is 0.1742 in the first regression and 0.3530, twice as
large, in the second. We will investigate the reasons for the difference. It will be convenient to

rewrite (4.29) in such a way as to isolate the contributions of the various factors:

1 1

1
W X—=X X (4.30)
Vo VarXo) i

s.e(b,)=s

The first element we need, s,, can be obtained directly from the regression output. sf is equal to the

sum of the squares of the residuals divided by n — k, here n — 3:

s2=—"_Var(e) = RSS

u

(4.31)

n I —\2 1 ~ 2 1
X — e.—e) =—— ) e =
k n;(l ) n—kz l k

n—k n-— , P n-—
(Note that e is equal to 0. This was proved for the simple regression model in Chapter 3, and the
proof generalizes easily.) RSS is given in the top left quarter of the regression output, as part of the
decomposition of the total sum of squares into the explained sum of squares (in the Stata output
denoted the model sum of squares) and the residual sum of squares. The value of n — k is given to the
right of RSS, and the ratio RSS/(n — k) to the right of that. The square root, s,, is listed as the Root
MSE (root mean square error) in the top right quarter of the regression output, 5.7921 for the
collective bargaining subsample and 7.8493 for the regression with the other respondents.

TABLE 4.1

Decomposition of the Standard Error of S

Component Sy n Var(S) TS ASVABC s.e.
Collective bargaining 5.7921 63 6.0136 0.5380 0.3530
Not collective bargaining 7.8493 507 6.0645 0.5826 0.1742
Factor

Collective bargaining 5.7921 0.1260 0.4078 1.1863 0.3531
Not collective bargaining 7.8493 0.0444 0.4061 1.2304 0.1741
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The number of observations, 63 in the first regression and 507 in the second, is also listed in the
top right quarter of the regression output. The variances of S, 6.0136 and 6.0645, had to be calculated
from the sample data. The correlations between S and ASVABC, 0.5380 and 0.5826 respectively, were
calculated using the Stata “cor” command. The factors of the standard error in equation (4.30) were
then derived and are shown in the lower half of Table 4.1.

It can be seen that, in this example, the reason that the standard error of S in the collective
bargaining subsample is relatively large is that the number of observations in that subsample is
relatively small. The effect of the variance of S is neutral, and those of the other two factors are in the
opposite direction, but not enough to make much difference.

t Tests and Confidence Intervals

t tests on the regression coefficients are performed in the same way as for simple regression analysis.
Note that when you are looking up the critical level of ¢ at any given significance level, it will depend
on the number of degrees of freedom, n — k: the number of observations minus the number of
parameters estimated. The confidence intervals are also constructed in exactly the same way as in
simple regression analysis, subject to the above comment about the number of degrees of freedom. As
can be seen from the regression output, Stata automatically calculates confidence intervals for the
coefficients (95 percent by default, other levels if desired), but this is not a standard feature of
regression applications.

Consistency

Provided that the fourth Gauss—Markov condition is satisfied, OLS yields consistent estimates in the
multiple regression model, as in the simple regression model. As n becomes large, the population
variance of the estimator of each regression coefficient tends to 0 and the distribution collapses to a
spike, one condition for consistency. Since the estimator is unbiased, the spike is located at the true
value, the other condition for consistency.

Exercises

4.6 Perform ¢ tests on the coefficients of the variables in the educational attainment function
reported in Exercise 4.1.

4.7 Perform ¢ tests on the coefficients of the variables in the educational attainment and earnings
functions fitted by you in Exercises 4.2 and 4.3.

4.8 The following earnings functions were fitted separately for males and females, using EAEF
Data Set 21 (standard errors in parentheses):

males

EARNINGS = —3.6121 + 0.7499S +0.1558ASVABC
(2.8420) (0.2434)  (0.0600)
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females

EARNINGS = -5.9010 + 0.8803S +0.10884SVABC
(2.6315)  (0.1910) (0.0577)

Using equation (4.30), explain why the standard errors of the coefficients of S and ASVABC are
greater for the male subsample than for the female subsample, and why the difference in the
standard errors is relatively large for S.

Further data:
males females
Sy 8.47 6.23
n 325 245
V's ASVABC 0.61 0.55
Var(S) 5.88 6.26
Var(ASVABC) 96.65 68.70

4.9* Demonstrate that e is equal to 0 in multiple regression analysis. (Note: The proof is a
generalization of the proof for the simple regression model, given in Section 2.7.)

410 Investigate whether you can extend the determinants of weight model using your EAEF data set,
taking WEIGHT94 as the dependent variable, and HEIGHT and other continuous variables in
the data set as explanatory variables. Provide an interpretation of the coefficients and perform ¢
tests on them.

4.4 Multicollinearity

In the previous section, in the context of a model with two explanatory variables, it was seen that the
higher is the correlation between the explanatory variables, the larger are the population variances of
the distributions of their coefficients, and the greater is the risk of obtaining erratic estimates of the
coefficients. If the correlation causes the regression model to become unsatisfactory in this respect, it
is said to be suffering from multicollinearity.

A high correlation does not necessarily lead to poor estimates. If all the other factors determining
the variances of the regression coefficients are helpful, that is, if the number of observations and the
sample variances of the explanatory variables are large, and the variance of the disturbance term small,
you may well obtain good estimates after all. Multicollinearity therefore must be caused by a
combination of a high correlation and one or more of the other factors being unhelpful. And it is a
matter of degree, not kind. Any regression will suffer from it to some extent, unless all the
explanatory variables are uncorrelated. You only start to talk about it when you think that it is
affecting the regression results seriously.

It is an especially common problem in time series regressions, that is, where the data consists of a
series of observations on the variables over a number of time periods. If two or more of the
explanatory variables have a strong time trend, they will be highly correlated and this condition may
give rise to multicollinearity.

It should be noted that the presence of multicollinearity does not mean that the model is
misspecified. Accordingly, the regression coefficients remain unbiased and the standard errors remain
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TABLE 4.2
x X % Change in  Change in  Approximate
2 3 X, X3 change in'Y
10 19 514, 1 2 5
11 21 56+u, 1 2 5
12 23 61+u; 1 2 5
13 25 66-+u, 1 2 5
14 27 T14us 1 2 5
15 29 76+ug 1 2 5

valid. The standard errors will be larger than they would have been in the absence of
multicollinearity, warning you that the regression estimates are unreliable.

We will consider first the case of exact multicollinearity where the explanatory variables are
perfectly correlated. Suppose that the true relationship is

Y=2+3X,+ X5+ u. (4.32)
Suppose that there is a linear relationship between X, and Xj:
X3 = 2X2 - 1, (433)

and suppose that X, increases by one unit in each observation. X3 will increase by 2 units, and Y by
approximately 5 units, for example as shown in Table 4.2.
Looking at the data, you could come to any of the following conclusions:

1. the correct one, that Y is determined by (4.32)
2. that Xj is irrelevant and Y is determined by the relationship

Y=1+5X,+u (4.34)
3. that X; is irrelevant and Y is determined by the relationship
Y=35+25X3+u (4.35)

In fact these are not the only possibilities. Any relationship that is a weighted average of (4.34) and
(4.35) would also fit the data. [(4.32) may be regarded as such a weighted average, being (4.34)
multiplied by 0.6 plus (4.35) multiplied by 0.4.]

In such a situation it is impossible for regression analysis, or any other technique for that matter,
to distinguish between these possibilities. You would not even be able to calculate the regression
coefficients because both the numerator and the denominator of the regression coefficients would
collapse to 0. This will be demonstrated with the general two-variable case. Suppose

Y= ﬁl + ﬁzXz + ﬁ3X3 +u (436)



MULTIPLE REGRESSION ANALYSIS 16

and

X;= A+ ‘LLXZ (437)
Substituting for X5 in (4.11), one obtains

_ Cov(X,,Y)Var(X;)-Cov(X;,Y)Cov(X,, X3)

b
: Var(X,)Var(X;) — [COV(XZ , X5 )]2

_ Cov(X,,Y)Var(A + uX,)-Cov([A + uX,1,Y)Cov(X,,[A+ uX,])
Var(X,)Var(A+ X ,) - [Cov(X, ,[A + uX, DI

(4.38)

_ Cov(X,,Y)Var(uX,) - Cov(uX,,Y)Cov(X,, uX,)
Var(X,)Var(uX,) - [Cov(X,, uX,)J’

By virtue of Variance Rule 4, the additive A in the variances can be dropped. A similar rule could be
developed for covariances, since an additive A does not affect them either. Hence

_ Cov(X,,Y)u?Var(X,) - uCov(X ,,Y)uCov(X,, X ,)

b
2 Var(X,)u>Var(X,) — [uCov(X,, X ,) |

(4.39)
_ UCov(X,,Y)Var(X,)- u’Cov(X,,Y)Var(X,) 0

u>Var(X,)Var(X,) - [uVar(X,)] 0

It is unusual for there to be an exact relationship among the explanatory variables in a regression.
When this occurs, it is typically because there is a logical error in the specification. An example is
provided by Exercise 4.13. However, it often happens that there is an approximate relationship. Here
is a regression of EARNINGS on S, ASVABC, and ASVAB5. ASVABS is the score on a speed test of the
ability to perform very simple arithmetical computations. Like ASVABC, the scores on this test were
scaled so that they had mean 50 and standard deviation 10.

. reg EARNINGS S ASVABC ASVAB5

Source | SS af MS Number of obs = 570
————————— e F( 3, 566) = 27.66
Model | 4909.11468 3 1636.37156 Prob > F = 0.0000
Residual | 33487.9224 566 59.1659406 R-squared = 0.1279
————————— b e Adj R-squared = 0.1232
Total | 38397.0371 569 67.4816117 Root MSE = 7.6919
EARNINGS | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ N
S | .7115506 .1612235 4.413 0.000 .3948811 1.02822
ASVABC | .1104595 .0504223 2.191 0.029 .0114219 .2094972
ASVAB5 | .0770794 .0463868 1.662 0.097 -.0140319 .1681908
_cons | -5.944977 2.161409 -2.751 0.006 -10.19034 -1.699616
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. cor ASVABC ASVABS5

(obs=570)
| ASVABC  ASVABS
________ oo
ASVABC | 1.0000
ASVABS | 0.6371  1.0000

The regression result indicates that an extra year of schooling increases hourly earnings by $0.71.
An extra point on ASVABC increases hourly earnings by $0.11.  An individual with a score one
standard deviation above the mean would therefore tend to earn an extra $1.10 per hour, compared
with an individual at the mean. An extra point on the numerical computation speed test increases
hourly earnings by $0.08.

Does ASVABS belong in the earnings function? A ¢ test reveals that its coefficient is just
significantly different from O at the 5 percent level, using a one-tailed test. (A one-tailed test is
justified by the fact that it is unlikely that a good score on this test would adversely affect earnings.)
In this regression, the coefficient of ASVABC is significant only at the 5 percent level. In the
regression without ASVABS, reported in Section 4.1, its ¢ statistic was 3.60, making it significantly
different from O at the 0.1 percent level. The reason for the reduction in its # ratio is that it is highly
correlated with ASVAB5. This makes it difficult to pinpoint the individual effects of ASVABC and
ASVABS5. As a consequence the regression estimates tend to be erratic. The high correlation causes
the standard errors to be larger than they would have been if ASVABC and ASVABS had been less
highly correlated, warning us that the point estimates are unreliable. In this regression,
multicollinearity is making it difficult to determine whether ASVABS is a determinant of earnings. It is
possible that it is not, and that its marginally-significant 7 statistic has occurred as a matter of chance.

Multicollinearity in Models with More Than Two Explanatory Variables

The foregoing discussion of multicollinearity was restricted to the case where there are two
explanatory variables. In models with a greater number of explanatory variables, multicollinearity
may be caused by an approximate linear relationship among them. It may be difficult to discriminate
between the effects of one variable and those of a linear combination of the remainder. In the model
with two explanatory variables, an approximate linear relationship automatically means a high
correlation, but when there are three or more, this is not necessarily the case. A linear relationship
does not inevitably imply high pairwise correlations between any of the variables. The effects of
multicollinearity are the same as in the case with two explanatory variables, and, as in that case, the
problem may not be serious if the population variance of the disturbance term is small, the number of
observations large, and the variances of the explanatory variables large.

What Can You Do About Multicollinearity?

The various ways of trying to alleviate multicollinearity fall into two categories: direct attempts to
improve the four conditions responsible for the reliability of the regression estimates, and indirect

methods.

2
w

First, you may try to reduce o, . The disturbance term is the joint effect of all the variables

influencing Y that you have not included explicitly in the regression equation. If you can think of an



MULTIPLE REGRESSION ANALYSIS 18

important variable that you have omitted, and is therefore contributing to u, you will reduce the
population variance of the disturbance term if you add it to the regression equation.

By way of illustration, we will take earnings function discussed in the previous section, where a
high correlation between ASVABC, the composite cognitive ability score, and ASVABS, the score on a
numerical computation speed test, gave rise to a problem of multicollinearity. We now add three new
variables that are often found to be determinants of earnings: length of tenure with the current
employer, here measured in weeks, sex of respondent, and whether the respondent was living in an
urban or a rural area. The last two variables are qualitative variables and their treatment will be
explained in Chapter 6. All of these new variables have high ¢ statistics and as a consequence the

estimate of 03 falls, from 59.17 to 54.50 (see the calculation of the residual sum of squares divided

by the number of degrees of freedom in the top right quarter of the regression output). However the
joint contribution of the new variables to the explanatory power of the model is small, despite being
highly significant, and the reduction in the standard errors of the coefficients of S, ASVABC, and
ASVABS is negligible. They might even have increased. The new variables happen to have very low
correlations with S, ASVABC, and ASVAB5. If they had been linearly related to one or more of the
variables already in the equation, their inclusion could have made the problem of multicollinearity
worse. Note how unstable the coefficients are, another sign of multicollinearity.

. reg EARNINGS S ASVABC ASVABS5 TENURE MALE URBAN

Source | SS af MS Number of obs = 570
————————— R F( 6, 563) = 23.60
Model | 7715.87322 6 1285.97887 Prob > F = 0.0000
Residual | 30681.1638 563 54.4958505 R-squared = 0.20009
————————— b e Adj R-squared = 0.1924
Total | 38397.0371 569 67.4816117 Root MSE = 7.3821
EARNINGS | Coef.  Std. Err. t P>|t| [95% Conf. Interval]
_________ oo ool ____
S | .8137184 .1563975 5.203 0.000 .5065245 1.120912

ASVABC | .0442801 .049716 0.891 0.373 -.0533714 .1419317
ASVABS5 | .1113769 .0458757 2.428 0.016 .0212685 .2014853
TENURE | .287038 .0676471 4.243 0.000 .1541665 .4199095
MALE | 3.123929 .64685 4.829 0.000 1.853395 4.394463
URBAN | 2.061867 .7274286 2.834 0.005 .6330618 3.490672
_cons | -10.60023 2.195757 -4.828 0.000 -14.91311 -6.287358

The next factor to consider is n, the number of observations. If you are working with cross-
section data (individuals, households, enterprises, etc) and you are undertaking a survey, you could
increase the size of the sample by negotiating a bigger budget. Alternatively, you could make a fixed
budget go further by using a technique known as clustering. You divide the country geographically
into localities. For example, the National Longitudinal Survey of Youth, from which the EAEF data
are drawn, divides the country into counties, independent cities and standard metropolitan statistical
areas. You select a number of localities randomly, perhaps using stratified random sampling to make
sure that metropolitan, other urban and rural areas are properly represented. You then confine the
survey to the localities selected. This reduces the travel time of the fieldworkers, allowing them to
interview a greater number of respondents.

If you are working with time series data, you may be able to increase the sample by working with
shorter time intervals for the data, for example quarterly or even monthly data instead of annual data.
This is such an obvious thing to do that most researchers working with time series almost
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automatically use quarterly data, if they are available, instead of annual data, even if there does not
appear to be a problem of multicollinearity, simply to minimize the population variances of the
regression coefficients. There are, however, potential problems. You may introduce, or aggravate,
autocorrelation (see Chapter 13), but this can be neutralized. Also you may introduce, or aggravate,
measurement error bias (see Chapter 9) if the quarterly data are less accurately measured than the
corresponding annual data. This problem is not so easily overcome, but it may be a minor one.

. reg EARNINGS S ASVABC ASVAB5

Source | SS af MS Number of obs = 2868
————————— s s s s s mm e m o F( 3, 2864) = 183.45
Model | 36689.8765 3 12229.9588 Prob > F = 0.0000
Residual | 190928.139 2864 66.664853 R-squared = 0.1612
————————— b e Adj R-squared = 0.1603
Total | 227618.016 2867 79.3924017 Root MSE = 8.1649
EARNINGS | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ N
S | 1.002693 .0787447 12.733 0.000 .8482905 1.157095

ASVABC | .1448345 .0241135 6.006 0.000 .097553 .1921161
ASVAB5 | .0483846 .0218352 2.216 0.027 .0055703 .091199
_cons | -9.654593 1.033311 -9.343 0.000 -11.6807 -7.628485

The output shows the result of running the regression with all 2,867 observations in the EAEF
data set. Comparing this result with that using Data Set 21, we see that the standard errors are much
smaller, as expected. As a consequence, the ¢ statistics are higher. In the case of ASVABC, this is
partly due to the fact that the point estimate of the coefficient is higher. However, in the case of
ASVABS, the ¢ statistic is higher despite the fact that the coefficient is smaller.

A third possible way of reducing the problem of multicollinearity might be to increase the
variance of the explanatory variables. This is possible only at the design stage of a survey. For
example, if you were planning a household survey with the aim of investigating how expenditure
patterns vary with income, you should make sure that the sample included relatively rich and relatively
poor households as well as middle-income households by stratifying the sample. (For a discussion of
sampling theory and techniques, see, for example, Moser and Kalton, 1985, or Fowler, 1993.)

The fourth direct method is the most direct of all. If you are still at the design stage of a survey,
you should do your best to obtain a sample where the explanatory variables are less related (more
easily said than done, of course).

Next, indirect methods. If the correlated variables are similar conceptually, it may be reasonable
to combine them into some overall index. That is precisely what has been done with the three
cognitive ASVAB variables. ASVABC has been calculated as a weighted average of ASVAB2
(arithmetic reasoning), ASVAB3 (word knowledge), and ASVAB4 (paragraph comprehension). Here is
a regression of FARNINGS on S and the three components of ASVABC. ASVAB2 has a highly
significant coefficient, but ASVAB3 does not and the coefficient of ASVAB4 has the wrong sign. This
is not surprising, given the high correlations between the ASVAB variables.
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reg EARNINGS S ASVAB2 ASVAB3 ASVAB4

Source | Ss at MS Number of obs = 570
————————— et ettt F( 4, 565) = 25.68
Model | 5906.47726 4 1476.61931 Prob > F = 0.0000
Residual | 32490.5598 565 57.5054156 R-squared = 0.1538
————————— e Adj R-squared = 0.1478
Total | 38397.0371 569 67.4816117 Root MSE = 7.5832
EARNINGS | Coef.  Std. Err. t P>|t| [95% Conf. Interval]
_________ o o m o oo ________
S | .7362439 .1586812 4.640 0.000 .4245668 1.047921

ASVAB2 | .2472668 .0472249 5.236  0.000 .154509 .3400246
ASVAB3 | .0137422 .058716 0.234  0.815 -.1015861 .1290705
ASVAB4 | -.1051868 .0544682 -1.931  0.054 -.2121716 .001798
_cons | -4.734303 2.06706 -2.290  0.022 -8.794363  -.6742428

cor ASVAB2 ASVAB3 ASVAB4

(obs=570)

| ASVAB2 ASVAB3  ASVAB4
________ oo el
ASVAB2 | 1.0000
ASVAB3 | 0.6916  1.0000
ASVAB4 | 0.6536 0.7628  1.0000

Comparing this regression with the regression with ASVABC, it can be seen that the standard
errors of the coefficients of ASVAB2, ASVAB3, and ASVAB4 are larger than that of ASVABC, as you
would expect. The ¢ statistic of ASVAB2 is larger than that of ASVABC, but that is because its
coefficient is larger.

Another possible solution to the problem of multicollinearity is to drop some of the correlated
variables, if they have insignificant coefficients. If we drop ASVAB3 and ASVAB4, we obtain the
output shown. As expected, the standard error of the coefficient of ASVAB2 is smaller than in the
regression including ASVAB3 and ASVAB4. However, this approach to alleviating the problem of
multicollinearity involves the risk that some of the variables dropped may truly belong in the model
and their omission may cause omitted variable bias (see Chapter 7).

reg EARNINGS S ASVAB2

Source | Ss at MS Number of obs = 570
————————— et ettt F( 2, 567) =  48.81
Model | 5639.37111 2 2819.68556 Prob > F = 0.0000
Residual | 32757.666 567 57.7736613 R-squared = 0.1469
————————— e Adj R-squared = 0.1439
Total | 38397.0371 569 67.4816117 Root MSE = 7.6009
EARNINGS | Coef.  Std. Err. t P>|t| [95% Conf. Interval]
_________ o DD oo ____
S | .6449415 .1519755 4.244  0.000 .3464378 .9434452

ASVAB2 | .2019724 .0376567 5.364  0.000 .1280086 .2759361
_cons | -5.796398  1.957987 -2.960 0.003 -9.642191  -1.950605

A further way of dealing with the problem of multicollinearity is to use extraneous information, if
available, concerning the coefficient of one of the variables.

Y=, +B,X+B,P+u (4.40)
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For example, suppose that Y in equation (4.40) is the aggregate demand for a category of
consumer expenditure, X is aggregate disposable personal income, and P is a price index for the
category. To fit a model of this type you would use time series data. If X and P possess strong time
trends and are therefore highly correlated, which is often the case with time series variables,
multicollinearity is likely to be a problem. Suppose, however, that you also have cross-section data on
Y and X derived from a separate household survey. These variables will be denoted Y' and X' to
indicate that the data are household data, not aggregate data. Assuming that all the households in the
survey were paying roughly the same price for the commodity, one would fit the simple regression

Y =b +b,X (4.41)
Now substitute b, for f3, in the time series model,
Y=, +b,X +B,P+u, (4.42)
subtract b, X from both sides,
Y-b,X =, +B,P+u (4.43)

and regress Z=Y— b,X on price. This is a simple regression, so multicollinearity has been

eliminated.
There are, however, two possible problems with this technique. First, the estimate of 5 in (4.43)

depends on the accuracy of the estimate of b, , and this of course is subject to sampling error. Second,

you are assuming that the income coefficient has the same meaning in time series and cross-section
contexts, and this may not be the case. For many commodities the short-run and long-run effects of
changes in income may differ because expenditure patterns are subject to inertia. A change in income
can affect expenditure both directly, by altering the budget constraint, and indirectly, through causing
a change in lifestyle, and the indirect effect is much slower than the direct one. As a first
approximation, it is commonly argued that time series regressions, particularly those using short
sample periods, estimate short-run effects while cross-section regressions estimate long-run ones. For
a discussion of this and related issues, see Kuh and Meyer, 1957.

Last, but by no means least, is the use of a theoretical restriction, which is defined as a
hypothetical relationship among the parameters of a regression model. It will be explained using an
educational attainment model as an example. Suppose that we hypothesize that years of schooling, S,
depends on ASVABC, and the years of schooling of the respondent's mother and father, SM and SF,
respectively:

S =P, +B,ASVABC + B,SM + B,SF +u (4.44)

Fitting the model using EAEF Data Set 21, we obtain the following output:
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reg S ASVABC SM SF

Source | Ss at MS Number of obs = 570
————————— s m oo mm o m i m F( 3, 566) = 110.83
Model | 1278.24153 3 426.080508 Prob > F = 0.0000
Residual | 2176.00584 566 3.84453329 R-squared = 0.3700
————————— e Adj R-squared = 0.3667
Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

S | Coef.  Std. Err. t P>|t| [95% Conf. Interval]
_________ oo ool ____
ASVABC | .1295006 .0099544 13.009 0.000 .1099486 .1490527
SM | .069403 .0422974 1.641 0.101 -.013676 .152482

SF | .1102684 .0311948 3.535 0.000 .0489967 .1715401

cons | 4.914654 .5063527 9.706 0.000 3.920094 5.909214

The regression coefficients imply that S increases by 0.13 years for every one-point increase in
ASVABC, by 0.07 years for every extra year of schooling of the mother and by 0.11 years for every
extra year of schooling of the father. Mother's education is generally held to be at least as important as
father's education for educational attainment, so the relatively low coefficient of SM is unexpected. It
is also surprising that the coefficient is not significant, even at the 5 percent level, using a one-tailed
test. However assortive mating leads to a high correlation between SM and SF and the regression
appears to be suffering from multicollinearity.

Suppose that we hypothesize that mother's and father's education are equally important. We can
then impose the restriction 85 = B4 This allows us to write the equation as

S =B, + B,ASVSABC + B,(SM + SF) +u (4.45)

Defining SP to be the sum of SM and SF, the equation may be rewritten with ASVABC and SP as
the explanatory variables:

S=p,+ B,ASVABC + 3;SP +u (4.46)
g SP=SM+SF

reg S ASVABC SP
Source | Ss at MS Number of obs = 570
————————— o m s s m e m e m - F( 2, 567) = 166.22
Model | 1276.73764 2 638.368819 Prob > F = 0.0000
Residual | 2177.50973 567 3.84040517 R-squared = 0.3696
————————— e Adj R-squared = 0.3674
Total | 3454.24737 569 6.07073351 Root MSE = 1.9597
S | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ ol
ASVABC | .1295653 .0099485 13.024 0.000 .1100249 .1491057
SP | .093741 .0165688 5.658 0.000 .0611973 .1262847
cons | 4.823123 .4844829 9.955 0.000 3.871523 5.774724

The estimate of f3; is now 0.094. Not surprisingly, this is a compromise between the coefficients
of SM and SF in the previous specification. The standard error of SP is much smaller than those of SM
and SF, indicating that the use of the restriction has led to a gain in efficiency, and as a consequence
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the ¢ statistic is very high. Thus the problem of multicollinearity has been eliminated. However, it is
possible that the restriction may not be valid. We should test it. We shall see how to do this in
Chapter 7.

Exercises

4.11 Using your EAEF data set, regress S on SM, SF, ASVAB2, ASVAB3, and ASVAB4, the three
components of the ASVABC composite score. Compare the coefficients and their standard
errors with those of ASVABC in a regression of S on SM, SF, and ASVABC. Calculate
correlation coefficients for the three ASVAB components.

412 Investigate the determinants of family size by regressing SIBLINGS on SM and SF using your
EAEF data set. SM and SF are likely to be highly correlated (find the correlation in your data
set) and the regression may be subject to multicollinearity. Introduce the restriction that the
theoretical coefficients of SM and SF are equal and run the regression a second time replacing
SM and SF by their sum, SP. Evaluate the regression results.

4.13* A researcher investigating the determinants of the demand for public transport in a certain city
has the following data for 100 residents for the previous calendar year: expenditure on public
transport, E, measured in dollars; number of days worked, W; and number of days not worked,
NW. By definition NW is equal to 365 — W. He attempts to fit the following model

E:ﬁl +ﬁ2W+ ﬁ3NW+ u

Explain why he is unable to fit this equation. (Give both intuitive and technical explanations.)
How might he resolve the problem?

4.14 Years of work experience in the labor force is generally found to be an important determinant of
earnings. There is no direct measure of work experience in the EAEF data set, but potential
work experience, PWE, defined by

PWE=AGE-S-5

may approximate it. This is the maximum number of years since the completion of full-time
education, assuming that an individual enters first grade at the age of 6. Using your FAEF data
set, first regress FARNINGS on S and PWE, and then run the regression a second time adding
AGE as well. Comment on the regression results.

4.5 Goodness of Fit: R?

As in simple regression analysis, the coefficient of determination, R*, measures the proportion of the
variance of Y explained by the regression and is defined equivalently by Var(Y )/Var(Y), by [1 -

Var(e)]/Var(Y), or by the square of the correlation coefficient for ¥ and Y . It can never decrease, and
generally will increase, if you add another variable to a regression equation, provided that you retain
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all the previous explanatory variables. To see this, suppose that you regress Y on X, and X; and fit the
equation

Y, =b, +b, Xy +b X5 (4.47)
Next suppose that you regress Y on X, only and the result is
Y. =b +bX,, (4.48)
This can be rewritten
Y, =b +b,X, +0X,, (4.49)

Comparing (4.47) and (4.49), the coefficients in the former have been determined freely by the OLS
technique using the data for ¥, X,, and X; to give the best possible fit. In (4.49), however, the
coefficient of X has arbitrarily been set at 0, and the fit will be suboptimal unless, by coincidence, b;

happens to be 0, in which case the fit will be the same. (bl* will then be equal to by, and b; will be

equal to b,). Hence, in general, the level of R* will be higher in (4.47) than in (4.49), and it can never
be lower. Of course, if the new variable does not genuinely belong in the equation, the increase in R
is likely to be negligible.

You might think that, because R* measures the proportion of the variance jointly explained by the
explanatory variables, it should be possible to deduce the individual contribution of each explanatory
variable and thus obtain a measure of its relative importance. At least it would be very convenient if
one could. Unfortunately, such a decomposition is impossible if the explanatory variables are
correlated because their explanatory power will overlap. The problem will be discussed further in
Section 7.2.

F Tests

We saw in Section 3.10 that we could perform an F test of the explanatory power of the simple
regression model

Yi=Bi+ BoXi + u; (4.50)

the null hypothesis being Hy: 8, = 0 and the alternative being H,: 8, #0. The null hypothesis was the
same as that for a ¢ test on the slope coefficient and it turned out that the F test was equivalent to a
(two-tailed) ¢ test. However, in the case of the multiple regression model the tests have different roles.
The ¢ tests test the significance of the coefficient of each variable individually, while the F test tests
their joint explanatory power. The null hypothesis, which we hope to reject, is that the model has no
explanatory power. The model will have no explanatory power if it turns out that Y is unrelated to any
of the explanatory variables. Mathematically, therefore, if the model is

Yi= i+ BoXoi + ... + BiXu + u;, (4.51)
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the null hypothesis is that all the slope coefficients f3, ..., B are O:
Hy Bo=...=B=0 (4.52)

The alternative hypothesis H; is that at least one of the slope coefficients B,, ..., By is different from 0.
The F statistic is defined as

_ ESSI(k—1)

F(k—-1n-k)
RSS I(n—k)

(4.53)

and the test is performed by comparing this with the critical level of F in the column corresponding to
k — 1 degrees of freedom and the row corresponding to n — k degrees of freedom in the appropriate part
of Table A.3.

This F statistic may also be expressed in terms of R* by dividing both the numerator and
denominator of (4.53) by TSS, the total sum of squares, and noting that ESS/TSS is R> and RSS/TSS is
(1-R%:

R*/(k=1)

Flkk-1ln-ky=—"~—"—
== R J- b

(4.54)

Example

The educational attainment model will be used as an illustration. We will suppose that S depends on
ASVABC, SM, and SF:

S =1 + BLASVABC + B3SM + B4SF + u. (4.55)
The null hypothesis for the F test of goodness of fit is that all three slope coefficients are equal to 0:
H(): ﬁz = ﬁ} = ﬁ4 =0 (456)

The alternative hypothesis is that at least one of them is nonzero. The regression output using FAEF
Data Set 21 is as shown:
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. reg S ASVABC SM SF

Source | SS af MS Number of obs = 570
————————— R e F( 3, 566) = 110.83
Model 1278.24153 3 426.080508 Prob > F = 0.0000
Residual 2176.00584 566 3.84453329 R-squared = 0.3700
————————— B et Adj R-squared = 0.3667
Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

S | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
ASVABC .1295006 .0099544 13.009 0.000 .1099486 .1490527
SM .069403 .0422974 1.641 0.101 -.013676 .152482

SF .1102684 .0311948 3.535 0.000 .0489967 .1715401
_cons 4.914654 .5063527 9.706 0.000 3.920094 5.909214

In this example, k — 1, the number of explanatory variables, is equal to 3 and n — k, the number of
degrees of freedom, is equal to 566. The numerator of the F statistic is the explained sum of squares
divided by k£ — 1. In the Stata output these numbers, 1278.2 and 3, respectively, are given in the Model
row. The denominator is the residual sum of squares divided by the number of degrees of freedom
remaining, 2176.0 and 566, respectively. Hence the F statistic is 110.8. All serious regression
applications compute it for you as part of the diagnostics in the regression output.

1278.2/3

F(3,566)= =222
2176.0/566

(4.57)

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,500), which is given. At the 0.1 percent level, this is 5.51. Hence we reject H, at that significance
level. This result could have been anticipated because both ASVABC and SF have highly significant ¢
statistics. So we knew in advance that both 3, and f3; were nonzero.

In general, the F statistic will be significant if any ¢ statistic is. In principle, however, it might not
be. Suppose that you ran a nonsense regression with 40 explanatory variables, none being a true
determinant of the dependent variable. Then the F statistic should be low enough for Hy, not to be
rejected. However, if you are performing ¢ tests on the slope coefficients at the 5 percent level, with a
5 percent chance of a Type I error, on average 2 of the 40 variables could be expected to have
"significant" coefficients.

On the other hand it can easily happen that the F statistic is significant while the 7 statistics are
not. Suppose you have a multiple regression model that is correctly specified and R* is high. You
would be likely to have a highly significant F statistic. However, if the explanatory variables are
highly correlated and the model is subject to severe multicollinearity, the standard errors of the slope
coefficients could all be so large that none of the ¢ statistics is significant. In this situation you would
know that your model has high explanatory power, but you are not in a position to pinpoint the
contributions made by the explanatory variables individually.
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Further Analysis of Variance

Besides testing the equation as a whole, you can use an F test to see whether or not the joint marginal
contribution of a group of variables is significant. Suppose that you first fit the model

Y=01+BXo+ ... + BiXi + u, (4.58)

with explained sum of squares ESS,. Next you add m — k variables and fit the model
Y=01+BXo+ ... + BXi + BiaiXiw1 + ... + B X + u, (4.59)
with explained sum of squares ESS,,. You have then explained an additional sum of squares equal to
ESS,, — ESS; using up an additional m — k degrees of freedom, and you want to see whether the

increase is greater than is likely to have arisen by chance.
Again an F test is used and the appropriate F statistic may be expressed in verbal terms as

Improvement in fit/Extra degrees of freedom used up (4.60)

Residual sum of squares remaining /Degrees of freedom remaining

Since RSS,,, the unexplained sum of squares in the second model, is equal to 7SS — ESS,,, and RSS;, the
residual sum of squares in the first model, is equal to 7SS — ESS}, the improvement in the fit when the
extra variables are added, ESS,, — ESS;, is equal to RSS; — RSS,,. Hence the appropriate F statistic is

_ (RSS, —RSS,,)/(m—k)

Fm—k,n—m) 4.61)
RSS,, /(n—m)
TABLE 4.3
) Degrees of Sum of Squares Divided L
Sum of Squares Freedom by Degrees of Freedom F Staristic
Explained by
original ESS; k-1 ESSi/(k—1)
variables
ESS, /(k-1)
RSS, /(n—k)
Residual RSS, =TSS - ESS,, n—k RSS/(n—k)
Explained by ESS,, — ESS;
new variables = RSS, - RSS,, m—k (RSS; = RSS,)/(m = k)

(RSS, —RSS,)/(m—k)
RSS,, /(n—m)

Residual RSS,, =TSS - ESS,, n—-m RSS,/(n —m)
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Under the null hypothesis that the additional variables contribute nothing to the equation,

Hy: B =Ba=...=Pn=0 (4.62)

this F statistic is distributed with m — k and n — m degrees of freedom. The upper half of Table 4.3
gives the analysis of variance for the explanatory power of the original k£ — 1 variables. The lower half
gives it for the joint marginal contribution of the new variables.

Example
We will illustrate the test with the educational attainment example. The output shows the result of

regressing S on ASVABC using EAEF Data Set 21. We make a note of the residual sum of squares,
2300.4.

reg S ASVABC

Source | SS af MS Number of obs = 570
————————— R T L LT F( 1, 568) = 284.89
Model 1153.80864 1 1153.80864 Prob > F = 0.0000
Residual 2300.43873 568 4.05006818 R-squared = 0.3340
————————— e Adj R-squared = 0.3329
Total | 3454.24737 569 6.07073351 Root MSE = 2.0125

S | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
ASVABC .1545378 .0091559 16.879 0.000 .1365543 .1725213
_cons 5.770845 .4668473 12.361 0.000 4.853888 6.687803

Now we add a group of two variables, the years of schooling of each parent. Do these variables
jointly make a significant contribution to the explanatory power of the model? Well, we can see that a
t test would show that SF has a highly significant coefficient, but we will perform the F test anyway.
We make a note of RSS, 2176.0.

reg S ASVABC SM SF

Source | SS af MS Number of obs = 570
————————— R e F( 3, 566) = 110.83
Model 1278.24153 3 426.080508 Prob > F = 0.0000
Residual 2176.00584 566 3.84453329 R-squared = 0.3700
————————— B et Adj R-squared = 0.3667
Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

S | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
ASVABC .1295006 .0099544 13.009 0.000 .1099486 .1490527
SM .069403 .0422974 1.641 0.101 -.013676 .152482

SF .1102684 .0311948 3.535 0.000 .0489967 .1715401
_cons 4.914654 .5063527 9.706 0.000 3.920094 5.909214

The improvement in the fit on adding the parental schooling variables is the reduction in the
residual sum of squares, 2300.4 — 2176.0. The cost is two degrees of freedom because two additional
parameters have been estimated. The residual sum of squares remaining unexplained after adding SM
and SF is 2176.0. The number of degrees of freedom remaining after adding the new variables is 570
—4 =566.
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(2300.4 —2176.0)/2
2176.0/566

F(2,570-4)= =16.18 (4.63)

Thus the F statistic is 16.18. The critical value of F(2,500) at the 0.1 percent level is 7.00. The critical
value of F(2,566) must be lower, so we reject Hy and conclude that the parental education variables do
have significant joint explanatory power.

Relationship between F Statistic and t Statistic
Suppose that you are considering the following alternative model specifications:
Y=B1+BXo+ ...+ B X +u (4.64)
Y=B1+BXo+ ...+ B X + BXi +u (4.65)

the only difference being the addition of X; as an explanatory variable in (4.63). You now have two
ways to test whether X; belongs in the model. You could perform a ¢ test on its coefficient when
(4.65) is fitted. Alternatively, you could perform an F test of the type just discussed, treating X; as a
“group” of just one variable, to test its marginal explanatory power. For the F test the null hypothesis
will be Hp: B = 0, since only X; has been added and this is the same null hypothesis as that for the ¢
test. Thus it might appear that there is a risk that the outcomes of the two tests might conflict with
each other.

Fortunately, this is impossible, since it can be shown that the F' statistic must be equal to the
square of the ¢ statistic and that the critical value of F is equal to the square of the critical value of ¢
(two-tailed test). This result means that the 7 test of the coefficient of a variable is in effect a test of its
marginal explanatory power, after all the other variables have been included in the equation.

If the variable is correlated with one or more of the other variables, its marginal explanatory
power may be quite low, even if it genuinely belongs in the model. If all the variables are correlated,
it is possible for all of them to have low marginal explanatory power and for none of the  tests to be
significant, even though the F test for their joint explanatory power is highly significant. If this is the
case, the model is said to be suffering from the problem of multicollinearity discussed earlier in this
chapter.

No proof of the equivalence will be offered here, but it will be illustrated with the educational
attainment model. In the first regression it has been hypothesized that S depends on ASVABC and SM.
In the second, it has been hypothesized that it depends on SF as well.

The improvement on adding SF is the reduction in the residual sum of squares, 2224.0 — 2176.0.
The cost is just the single degree of freedom lost when estimating the coefficient of SF. The residual
sum of squares remaining after adding SF is 2176.0. The number of degrees of freedom remaining
after adding SF is 570 — 4 = 566. Hence the F statistic is 12.49.

. reg S ASVABC SM . reg S ASVABC SM SF
Source | Ss at MS Source | SS af MS
_________ e
Model 1230.2039 2 615.101949 Model 1278.24153 3 426.080508

Residual 2224.04347 567 3.92247526 Residual 2176.00584 566 3.84453329
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_________ R e
Total | 3454.24737 569 6.07073351 Total | 3454.24737 569 6.07073351
S | Coef std. Err t S | Coef std. Err t
_________ e ________ il ___
ASVABC .1381062 .0097494 14.166 ASVABC .1295006 .0099544 13.009
SM .154783 .0350728 4.413 SM .069403 .0422974 1.641
_cons 4.791277 .5102431 9.390 SF .1102684 .0311948 3.535
———————————————————————————————————————— _cons 4.914654 .5063527 9.706
(2224.0-2176.0/1
F1,570-4) = /=12.49 (4.66)

2176.0/566

The critical value of F at the 0.1 percent significance level with 500 degrees of freedom is 10.96. The
critical value with 566 degrees of freedom must be lower, so we reject H, at the 0.1 percent level. The
t statistic for the coefficient of SF in the second regression is 3.54. The critical value of ¢ at the 0.1
percent level with 500 degrees of freedom is 3.31. The critical value with 566 degrees of freedom
must be lower, so we also reject Hy with the 7 test. The square of 3.54 is 12.53, equal to the F statistic,
except for rounding error, and the square of 3.31 is 10.96, equal to the critical value of F(1,500). (The
critical values shown are for 500 degrees of freedom, but this must also be true for 566 degrees of
freedom.) Hence the conclusions of the two tests must coincide.

"Adjusted" R?

If you look at regression output, you will almost certainly find near the R* statistic something called
the "adjusted" R*. Sometimes it is called the "corrected” R>. However, "corrected" makes it sound as
if it is better than the ordinary one, and this is debatable.

As was noted in Section 4.2, R* can never fall, and generally increases, if you add another

variable to a regression equation. The adjusted R, usually denoted R?*, attempts to compensate for
this automatic upward shift by imposing a penalty for increasing the number of explanatory variables.
It is defined as

n—1 _ n—le_k—l
n—-k n-k n—k

R*=1-(1-R%

E—1 (4.67)

n—

=R?- (1-R?).

where k — 1 is the number of explanatory variables. As k increases, (k — 1)/(n — k) increases, and so the
negative adjustment to R’ increases.

It can be shown that the addition of a new variable to a regression will cause R* to rise if and
only if the absolute value of its # statistic is greater than 1. Hence a rise in R*> when a new variable is
added does not necessarily mean that its coefficient is significantly different from 0. It therefore does
not follow, as is sometimes suggested, that a rise in R* implies that the specification of an equation
has improved.
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This is one reason why R> has lost favor as a diagnostic statistic. Another is the decrease in
attention paid to R’ itself. At one time there was a tendency for applied econometricians to regard R
as a key indicator of the success of model specification. In practice, however, as will be seen in the
following chapters, even a very badly specified regression model may yield a high R*, and recognition
of this fact has led to the demotion of R* in importance. It is now regarded as just one of a whole set
of diagnostic statistics that should be examined when evaluating a regression model. Consequently,
there is little to be gained by fine tuning it with a "correction" of dubious value.

Exercises

4.15 Using your EAEF data set, fit an educational attainment function, regressing S on ASVABC, SM,
and SF. Calculate the F statistic using R> and perform a test of the explanatory power of the
equation as a whole.

416 Fit an educational attainment function using the specification in Exercise 4.15, adding the
ASVAB speed test scores ASVABS and ASVAB6. Perform an F test of the joint explanatory
power of ASVAB5 and ASVAB6, using the results of this regression and that in Exercise 4.15.

417 Fit an educational attainment function, regressing § on ASVABC, SM, SF, and ASVABS.
Perform an F test of the explanatory power of ASVABG6, using the results of this regression and
that in Exercise 4.16. Verify that it leads to the same conclusion as a two-tailed ¢ test.

4.18* The researcher in Exercise 4.13 decides to divide the number of days not worked into the
number of days not worked because of illness, /, and the number of days not worked for other
reasons, O. The mean value of [ in the sample is 2.1 and the mean value of O is 120.2. He fits
the regression (standard errors in parentheses):

E = —96+ 2.10W+ 0450 R*=0.72
(8.3) (1.98) (1.77)

Perform ¢ tests on the regression coefficients and an F test on the goodness of fit of the equation.
Explain why the ¢ tests and F test have different outcomes.
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Nonlinear relationships are more plausible than linear ones for many economic processes. In this
chapter we will first define what is meant by linear regression analysis and then show how some
apparently nonlinear relationships can be fitted by it. We will next see what can be done when linear
methods cannot be used. The chapter ends with an exposition of a technique for discriminating
statistically between linear and nonlinear relationships.

5.1 Basic Procedure

One of the limitations of linear regression analysis is implicit in its very name, in that it can be used to
fit only linear equations where every explanatory term, except the constant, is written in the form of a
coefficient multiplied by variable:

y=PBi+ B, X, + B X5+ By Xy (5.1
Equations such as
B
Y=p+- (5.2)
and
Y=8x" (5.3)

are nonlinear.

However, both (5.2) and (5.3) have been suggested as suitable forms for Engel curves, the
relationship between the demand for a particular commodity, ¥, and income, X. Given data on Y and
X, how could one estimate the parameters ; and [, in these equations?

Actually, in both cases, with a little preparation one can use linear regression analysis after all.
First, note that (5.1) is linear in two senses. The right side is linear in variables because the variables
are included exactly as defined, rather than as functions. It therefore consists of a weighted sum of the
variables, the parameters being the weights. The right side is also linear in the parameters since it
consists of a weighted sum of these as well, the X variables being the weights this time.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 25.04.01.
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For the purpose of linear regression analysis, only the second type of linearity is important.
Nonlinearity in the variables can always be sidestepped by using appropriate definitions. For example,
suppose that the relationship were of the form

Y=, +B,X; +BsX; +B,log X, +... (5.4)
By defining Z, = X 22 , Zy =4 X5, Zs=10g X, etc, the relationship can be rewritten

Y= ﬁ1+ﬁ222+ﬁ3Z3+ﬁ4Z4+ (55)

and it is now linear in variables as well as in parameters. This type of transformation is only cosmetic,
and you will usually see the regression equation presented with the variables written in their nonlinear
form. This avoids the need for explanation and extra notation.

On the other hand an equation such as (5.3) is nonlinear in both parameters and variables and
cannot be handled by a mere redefinition. (Do not be tempted to think that you can make it linear by
defining Z = X P> and replacing X P> with Z; since you do not know [, you have no way of
calculating sample data for Z.) We will discuss the problem of fitting relationships that are nonlinear
in parameters in the next section.

In the case of (5.2), however, all we have to do is to define Z = 1/X. Equation (5.2) now becomes

Y=P0i+pZ (5.6)
and this is linear, so you regress Y on Z. The constant term in the regression will be an estimate of 3,
and the coefficient of Z will be an estimate of ..
Example
Suppose that you are investigating the relationship between annual consumption of bananas (boring,

safe example) and annual income, and you have the observations shown in Table 5.1 for 10
households (ignore Z for the time being):

TABLE 5.1
Bananas Income
(lbs) ($10,000)
Household Y X Z
1 1.71 1 1.000
2 6.88 2 0.500
3 8.25 3 0.333
4 9.52 4 0.250
5 9.81 5 0.200
6 11.43 6 0.167
7 11.09 7 0.143
8 10.87 8 0.125
9 12.15 9 0.111
10 10.94 10 0.100
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Bananas (Ibs)
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Figure 5.1. Regression of expenditure on bananas on income

These observations are plotted in Figure 5.1, together with the line obtained by regressing Y on X
(standard errors in parentheses):

Y = 4.62 + 0.84X R*=0.69 (5.7)
(1.26) (0.20)

Now, if you look at Figure 5.1, you will see that the regression line does not fit the observations
very well, despite the fact that the coefficient of income is significantly different from O at the 1
percent level. Quite obviously, the observations lie on a curve, while the regression equation is of
course a straight line. In this case, it is easy to see that the functional relationship between Y and X has
been misspecified. In the case of multiple regression analysis, nonlinearity might be detected using
the graphical technique described in Section 4.2. Alternatively, an examination of the residuals may
be sufficient to indicate that something is wrong. In this case the residuals are as shown in Table 5.2.

The residuals ought to be randomly positive or negative, large or small. Instead, they start out
being negative, cross to being positive, reach a maximum, fall again, and cross back to being negative:
very suspicious indeed.

TABLE 5.2
Household Y Y e Household Y Y e
1 1.71 5.46 -3.75 6 11.43 9.69 1.74
2 6.88 6.31 0.57 7 11.09 10.53 0.55
3 8.25 7.15 1.10 8 10.87 11.38 -0.51
4 9.52 8.00 1.52 9 12.15 1222 -0.07
5 9.81 8.84 0.97 10 10.94 13.07 -2.13
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The values of Y and X in this example were generated using the Monte Carlo technique, the true
relationship being

Y=12- IX_O + disturbance term, (5.8)

X taking the numbers from 1 to 10 and the values of the disturbance term being obtained using
normally distributed random numbers with O mean and standard deviation equal to 0.5.

If we realize this and define Z = 1/X, this equation becomes of the linear form (5.6). Z for each
household has already been calculated in Table 5.1. Regressing Y on Z, we obtain (standard errors in
parentheses):

Y = 12.48-10.99Z R =0.97 (5.9)
(0.26) (0.65)

Substituting Z = 1/X, this becomes

Y =12.48 —% (5.10)

In view of the excellent fit obtained with (5.9), it is not surprising that (5.10) is close to the true
equation (5.8). The regression relationship, together with the observations on Y, X, and Z, is shown in
Figures 5.2 and 5.3. The improvement in the fit, as measured by R’, is clear from a comparison of
Figures 5.1 and 5.3.

Figure 5.2. Regression of expenditure on bananas on the reciprocal of income
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Figure 5.3. Nonlinear regression of expenditure on bananas on income

5.2 Logarithmic Transformations

Next we will tackle functions such as (5.3), which are nonlinear in parameters as well as variables:
Yy=B,Xx" (5.11)

When you see such a function, you can immediately say that the elasticity of Y with respect to X is
constant and equal to ,. This is easily demonstrated. Regardless of the mathematical relationship
connecting Y and X, or the definitions of Y and X, the elasticity of ¥ with respect to X is defined to be
the proportional change in Y for a given proportional change in X:

dy|y

X)X (5.12)

elasticity =

Thus, for example, if Y is demand and X is income, the above expression defines the income elasticity
of demand for the commodity in question.
The expression may be rewritten

dy /dX

v/X (5.13)

elasticity =

In the case of the demand example, this may be interpreted as the marginal propensity to consume the
commodity divided by the average propensity to consume it.
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Use of Logarithms
First, some basic rules:
1. IfY=XZ logY=logX+logZ
2. IfY=X/Z, logY=logX-logZ
3. Ify=X", logY=nlogX
These rules can be combined to transform more complicated expressions. For example,
take equation (5.11): if Y = [31Xﬁ2 ,
log ¥ =log B, +log X ”*  using Rule 1
=log Bi + B, log X using Rule 3
Thus far we have not specified whether we are taking logarithms to base e or to base 10.
Throughout this text we shall be using e as the base, and so we shall be using what are
known as "natural" logarithms. This is standard in econometrics. Purists sometimes
write In instead of log to emphasize that they are working with natural logarithms, but
this is now unnecessary. Nobody uses logarithms to base 10 anymore. They were
tabulated in the dreaded log tables that were universally employed for multiplying or
dividing large numbers until the early 1970s. When the pocket calculator was invented,
they became redundant. They are not missed.
With e as base, we can state another rule:
4. If Y=¢€, log¥=X
¢*, also sometimes written exp(X), is familiarly known as the antilog of X . One can say
that log ¢* is the log of the antilog of X, and since log and antilog cancel out, it is not
surprising that log ¢* turns out just to be X.
If the relationship between Y and X takes the form (5.11),
dy _ Y
—= xPht=p —. 5.14
= BBX T =B, (5.14
Hence
. dy/dX Y/X
elasticity = / = B =f. (5.15)

Y/X  Y/X
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Thus, for example, if you see an Engel curve of the form

Y =0.01x %3, (5.16)

this means that the income elasticity of demand is equal to 0.3. If you are trying to explain this to
someone who is not familiar with economic jargon, the easiest way to explain it is to say that a 1
percent change in X (income) will cause a 0.3 percent change in Y (demand).

A function of this type can be converted into a linear equation by using logarithms. You will
certainly have encountered logarithms in a basic mathematics course. You probably thought that
when that course was finished, you could forget about them, writing them off as one of those academic
topics that never turn out to be of practical use. No such luck. In econometric work they are
indispensable, so if you are unsure about their use, you should review your notes from that basic math
course. The main properties of logarithms are given in a box.

In the box it is shown that (5.11) may be linearized as

log Y=1log B, + B log X (5.17)

If we write Y'=1log ¥, Z=log X, and B, = log B, the equation may be rewritten

Y'= B, +BZ (5.18)

The regression procedure is now as follows. First calculate Y' and Z for each observation, taking the
logarithms of the original data. Your regression application will almost certainly do this for you,
given the appropriate instructions. Second, regress Y' on Z. The coefficient of Z will be a direct

estimate of ,. The constant term will be an estimate of [31' , that is, of log B;. To obtain an estimate

of By, you have to take the antilog, that is, calculate exp( 3, ).

Example: Engel Curve

Figure 5.4 plots annual household expenditure on food eaten at home, FDHO, and total annual
household expenditure, both measured in dollars, for 869 representative households in the United
States in 1995, the data being taken from the Consumer Expenditure Survey.

When analyzing household expenditure data, it is usual to relate types of expenditure to total
household expenditure rather than income, the reason being that the relationship with expenditure
tends to be more stable than that with income. The outputs from linear and logarithmic regressions are
shown.

The linear regression indicates that 5.3 cents out of the marginal dollar are spent on food eaten at
home. Interpretation of the intercept is problematic because literally it implies that $1,916 would be
spent on food eaten at home even if total expenditure were 0.
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FDHO

14000 -

12000 +

10000 -

8000 ~

6000 -

4000

0 20000

40000

60000 80000

100000 120000 140000 EXP

Figure 5.4. Regression of expenditure on food eaten
at home on total household expenditure

reg FDHO EXP

Source | SS
Model | 915843574
Residual | 2.0815e+09
Total | 2.9974e+09
FDHO | Coef
EXP | .0528427
cons | 1916.143

g LGFDHO = 1n (FDHO)
g LGEXP = 1n (EXP)
reg LGFDHO LGEXP

Source | SS
Model | 84.4161692
Residual | 184.579612
Total | 268.995781
LGFDHO | Coef
LGEXP | .4800417
cons | 3.166271

af MS
1 915843574
867 2400831.16
868 3453184.55
std. Err t P>|t]
.0027055 19.531  0.000
96.54591 19.847  0.000
af MS
1 84.4161692
866 .213140429
867 .310260416
Sstd. Err. t P>|t]
.0241212 19.901  0.000
.244297 12.961  0.000

Number of obs = 869
F( 1, 867) = 381.47
Prob > F = 0.0000
R-squared = 0.3055
Adj R-squared = 0.3047
Root MSE = 1549.5
[95% Conf. Interval]
.0475325 .0581529
1726 .652 2105.634
Number of obs = 868
F( 1, 866) = 396.06
Prob > F = 0.0000
R-squared = 0.3138
Adj R-squared = 0.3130
Root MSE = .46167
[95% Conf. Interval]
.4326988 .5273846
2.686787 3.645754
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LGFDHO
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Figure 5.5. Logarithmic regression of expenditure on food eaten
at home on total household expenditure

The logarithmic regression, shown in Figure 5.5, indicates that the elasticity of expenditure on
food eaten at home with respect to total household expenditure is 0.48. Is this figure plausible? Yes,
because food eaten at home is a necessity rather than a luxury, so one would expect the elasticity to be
less than 1. The intercept has no economic meaning. Figure 5.6 plots the logarithmic regression line
in the original diagram. While there is not much difference between the regression lines over the
middle part of the range of observations, it is clear that the logarithmic regression gives a better fit for
very low and very high levels of household expenditure.
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10000

8000 1
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4000 -
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0 20000 40000 60000 80000 100000 120000 140000 EXP

Figure 5.6. Linear and logarithmic regressions of expenditure on food
eaten at home on total household expenditure
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Semi-Logarithmic Models

Another common functional form is given by equation (5.18):
Y:ﬁleﬁzx s (519)

Here [3, should be interpreted as the proportional change in Y per unit change in X. Again, this is
easily demonstrated. Differentiating,

dYy
d_x=ﬁ1ﬁzeﬁz" =B,Y, (5.20)

Hence

M =p,. (5.21)
Y
In practice it is often more natural to speak of the percentage change in Y, rather than the proportional
change, per unit change in X, in which case one multiplies the estimate of 3, by 100.
The function can be converted into a model that is linear in parameters by taking the logarithms
of both sides:

logY =log B,e”* =log B, +loge”*
=log B, + B, X loge (5.22)
=log B, + B, X

Note that only the left side is logarithmic in variables, and for this reason the model is described as
semi-logarithmic.

The interpretation of 3, as the proportional change in Y per unit change in X is valid only when £,
is small. When f, is large, the interpretation may be a little more complex. Suppose that Y is related
to X by (5.18) and that X increases by one unit to X'. Then Y, the new value of Y is given by

Y'= ﬁleﬁzX' — ﬁleﬁz(XH)
= BeP* P> =yeP: (5.23)

2
=Y+, +%+...)

Thus the proportional change per unit change in X is actually greater than 3,. However, if 3, is small
(say, less than 0.1), [322 and further terms will be very small and can be neglected. In that case, the

right side of the equation simplifies to Y(1 + f8,) and the original marginal interpretation of f, still
applies.
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Example: Semi-Logarithmic Earnings Function

11

For fitting earnings functions, the semi-logarithmic model is generally considered to be superior to the

linear model. We will start with the simplest possible version:

EARNINGS = B,e"

(5.24)

where EARNINGS is hourly earnings, measured in dollars, and S is years of schooling. After taking

logarithms, the model becomes

reg LGEARN S

Source | SS daf MS Number of obs = 570
————————— bm e F( 1, 568) = 93.21
Model | 21.681253 1 21.681253 Prob > F = 0.0000
Residual | 132.12064 568 .23260676 R-squared = 0.1410
————————— oo Adj R-squared = 0.1395
Total | 153.801893 569 .270302096 Root MSE = .48229
LGEARN | Coef Std. Err t P>|t] [95% Conf. Intervall
_________ o o e
S | .0792256 .0082061 9.655 0.000 .0631077 .0953435
cons | 1.358919 .1127785 12.049 0.000 1.137406 1.580433
LGEARN = B, + .S (5.25)

where LGEARN is the natural logarithm of EARNINGS and S, is the logarithm of f3;.

Logarithm of hourly earnings

0 T T T T T T T T T T T T T T T T T T T T
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling (highest grade completed)

Figure 5.7. Semi-logarithmic regression of earnings on schooling
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Figure 5.8. Linear and semi-logarithmic regressions of earnings on schooling

The regression output, which uses FAEF Data Set 21, indicates that every extra year of schooling
increases earnings by a proportion 0.079, that is, 7.9 percent, as a first approximation. Strictly
speaking, a whole extra year of schooling is not marginal, so it would be more accurate to calculate
", which is 1.082. Thus a more accurate interpretation is that an extra year of schooling raises
earnings by 8.2 percent.

The scatter diagram for the semi-logarithmic regression is shown in Figure 5.7. For the purpose
of comparison, it is plotted together with the linear regression in a plot with the untransformed
variables in Figure 5.8. The two regression lines do not differ greatly in their overall fit, but the semi-
logarithmic specification has the advantages of not predicting negative earnings for individuals with
low levels of schooling and of allowing the increase in earnings per year of schooling to increase with
schooling.

Exercises

Note: For all of these exercises, you should discuss the plausibility of the estimated coefficients.

5.1  Download the CES data set from the website and fit linear and (double) logarithmic regressions
for your commodity, excluding observations with 0 expenditure on your commodity. Interpret
the regressions and perform appropriate tests.

5.2 Repeat the logarithmic regression in Exercise 5.1, adding the logarithm of the size of the
household as an additional explanatory variable. Interpret the results and perform appropriate
tests.

5.3 Using your EAEF data set, regress the (natural) logarithm of WEIGHTS85 on the logarithm of
HEIGHT. Interpret the regression results and perform appropriate tests.

5.4 Using your EAEF data set, regress the logarithm of earnings on S and ASVABC. Interpret the
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regression results and perform appropriate tests.

5.5 Download from the website the OECD data set on employment growth rates and GDP growth
rates tabulated in Exercise 2.1, plot a scatter diagram and investigate whether a nonlinear
specification might be superior to a linear one.

5.3 The Disturbance Term

Thus far, nothing has been said about how the disturbance term is affected by these transformations.
Indeed, in the discussion above it has been left out altogether.

The fundamental requirement is that the disturbance term should appear in the transformed
equation as an additive term (+ u) that satisfies the Gauss-Markov conditions. If it does not, the least
squares regression coefficients will not have the usual properties, and the tests will be invalid.

For example, it is highly desirable that (5.6) should be of the form

Y=0+BZ+u (5.26)

when we take the random effect into account. Working backwards, this implies that the original
(untransformed) equation should be of the form

v=p+L2 (5.27)

In this particular case, if it is true that in the original equation the disturbance term is additive and the
Gauss-Markov conditions are satisfied, it will also be true in the transformed equation. No problem

here.
What happens when we start off with a model such as

Y=pB,XxF (5.28)
As we have seen, the regression model, after linearization by taking logarithms, is
log Y=1logP + B log X + u (5.29)

when the disturbance term is included. Working back to the original equation, this implies that (5.28)
should be rewritten

Y:ﬁlxzﬂzv (5.30)

where v and u are related by log v = u. Hence to obtain an additive disturbance term in the regression
equation for this model, we must start with a multiplicative disturbance term in the original equation.

The disturbance term v modifies f, X zﬁz by increasing it or reducing it by a random proportion,

rather than by a random amount. Note that u is equal to O when log v is equal to 0, which occurs when
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vis equal to 1. The random factor will be 0 in the estimating equation (5.29) if v happens to be equal
to 1. This makes sense, since if v is equal to 1 it is not modifying S, X zﬁz at all.

For the 7 tests and the F tests to be valid, # must be normally distributed. This means that log v
must be normally distributed, which will occur only if v is lognormally distributed.

What would happen if we assumed that the disturbance term in the original equation was additive,
instead of multiplicative?

Y=B,XP +u (5.31)

The answer is that when you take logarithms, there is no mathematical way of simplifying
log( B, X 2’32 +u). The transformation does not lead to a linearization. You would have to use a

nonlinear regression technique, for example, of the type discussed in the next section.

Example

The central limit theorem suggests that the disturbance term should have a normal distribution. It can
be demonstrated that if the disturbance term has a normal distribution, so also will the residuals,
provided that the regression equation is correctly specified. An examination of the distribution of the
residuals thus provides indirect evidence of the adequacy of the specification of a regression model.
Figure 5.9 shows the residuals from linear and semi-logarithmic regressions of EARNINGS on S using
EAEF Data Set 21, standardized so that they have standard deviation equal to 1, for comparison. The
distribution for the semi-logarithmic residuals is much closer to a normal distribution than that for the
linear regression, suggesting that the semi-logarithmic specification is preferable. Its distribution is
left skewed, but not nearly as sharply as that of the linear regression.

180
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100 -
80 -

60

R 11 11 1 [T

-3to-25 -25t02 -2to-1.5 -15t0-1 -1t0-05 -05t00 0t0 0.5 0.5t01 1t01.5 15t02 2t025 25103

B Residuals (linear) O Residuals (semi-logarithmic)

Figure 5.9. Standardized residuals from earnings function regressions
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5.4 Nonlinear Regression

Suppose you believe that a variable Y depends on a variable X according to the relationship
Y=B,+B,X" +u, (5.32)

and you wish to obtain estimates of B;, B, and B; given data on Y and X. There is no way of
transforming (5.23) to obtain a linear relationship, and so it is not possible to apply the usual
regression procedure.

Nevertheless one can still use the principle of minimizing the sum of the squares of the residuals
to obtain estimates of the parameters. The procedure is best described as a series of steps:

1. You start by guessing plausible values for the parameters.

2. You calculate the predicted values of Y from the data on X, using these values of the
parameters.

3. You calculate the residual for each observation in the sample, and hence RSS, the sum of the
squares of the residuals.

4. You then make small changes in one or more of your estimates of the parameters.

5. You calculate the new predicted values of Y, residuals, and RSS.

6. If RSS is smaller than before, your new estimates of the parameters are better than the old
ones and you take them as your new starting point.

7. You repeat steps 4, 5 and 6 again and again until you are unable to make any changes in the
estimates of the parameters that would reduce RSS.

8. You conclude that you have minimized RSS, and you can describe the final estimates of the
parameters as the least squares estimates.

Example

We will return to the bananas example in Section 5.1, where Y and X are related by

v=p+L2 (5.33)

To keep things as simple as possible, we will assume that we know that ; is equal to 12, so we have
only one unknown parameter to estimate. We will suppose that we have guessed that the relationship
is of the form (5.33), but we are too witless to think of the transformation discussed in Section 5.1.
We instead use nonlinear regression.

Figure 5.9 shows the value of RSS that would result from any choice of b,, given the values of ¥
and X in Table 5.1. Suppose we started off with a guess of —6.0 for b,. Our provisional equation
would be



TRANSFORMATIONS OF VARIABLES 16

RSS

30

25

20 A

15 4

10 ~

0 T T T T T T T T T
-15 -14 -13 -12 -11 -10 -9 -8 7 6 b

Figure 5.10. Nonlinear regression, RSS as a function of b.

6
Y=12-— 5.34
Y (5.34)

We would calculate the predicted values of Y and the residuals, and from the latter calculate a value of
29.17 for RSS.

Next we try b, = —7. RSS is now 18.08, which is lower. We are going in the right direction. So
we next try b, = 8. RSS is 10.08. We keep going. Putting b, = -9, RSS is 5.19. Putting b, = -10,
RSS is 3.39. Putting b, =-11, RSS is 4.70.

Clearly with b, = —11 we have overshot, because RSS has started rising again. We start moving
backwards, but with smaller steps, say 0.1, trying —10.9, —10.8 etc. We keep moving backwards until
we overshoot again, and then start moving forwards, with even smaller steps, say 0.01. Each time we
overshoot, we reverse direction, cutting the size of the step. We continue doing this until we have
achieved the desired accuracy in the calculation of the estimate of 3,. Table 5.3 shows the steps in this
example.

The process shown in Table 5.3 was terminated after 25 iterations, by which time it is clear that
the estimate, to two decimal places, is —10.08. Obviously, greater precision would have been obtained
by continuing the iterative process further.

TABLE 5.3

b, RSS b, RSS b, RSS b, RSS
-6 29.17 -10.8 4.19 -10.1 3.38 -10.06 3.384
-7 18.08 -10.7 3.98 -10.0 3.393 -10.07 3.384
-8 10.08 -10.6 3.80 -10.01 3.391 -10.08 3.383
-9 5.19 -10.5 3.66 -10.02 3.389 -10.09 3.384
-10 3.39 -10.4 3.54 -10.03 3.387
-11 4.70 -10.3 3.46 -10.04 3.386.

-10.9 4.43 -10.2 3.41 -10.05 3.385
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Note that the estimate is not exactly the same as the estimate obtained in equation (5.9), which
was —10.99. In principle the two sets of results should be identical, because both are minimizing the
sum of the squares of the residuals. The discrepancy is caused by the fact that we have cheated
slightly in the nonlinear case. We have assumed that 3, is equal to its true value, 12, instead of
estimating it. If we had really failed to spot the transformation that allows us to use linear regression
analysis, we would have had to use a nonlinear technique hunting for the best values of b, and b,
simultaneously, and the final values of b, and b, would have been 12.48 and —10.99, respectively, as in
equation (5.9).

In practice, the algorithms used for minimizing the residual sum of squares in a nonlinear model
are mathematically far more sophisticated than the simple trial-and-error method described above.
Nevertheless, until fairly recently a major problem with the fitting of nonlinear regressions was that it
was very slow compared with linear regression, especially when there were several parameters to be
estimated, and the high computing cost discouraged the use of nonlinear regression. This has changed
as the speed and power of computers have increased. As a consequence more interest is being taken in
the technique and some regression applications now incorporate user-friendly nonlinear regression
features.

5.5 Choice of Function: Box-Cox Tests

The possibility of fitting nonlinear models, either by means of a linearizing transformation or by the
use of a nonlinear regression algorithm, greatly increases the flexibility of regression analysis, but it
also makes your task as a researcher more complex. You have to ask yourself whether you should
start off with a linear relationship or a nonlinear one, and if the latter, what kind.

A graphical inspection, using the technique described in Section 4.2 in the case of multiple
regression analysis, might help you decide. In the illustration in Section 5.1, it was obvious that the
relationship was nonlinear, and it should not have taken much effort to discover than an equation of
the form (5.2) would give a good fit. Usually, however, the issue is not so clear-cut. It often happens
that several different nonlinear forms might approximately fit the observations if they lie on a curve.

When considering alternative models with the same specification of the dependent variable, the
selection procedure is straightforward. The most sensible thing to do is to run regressions based on
alternative plausible functions and choose the function that explains the greatest proportion of the
variance of the dependent variable. If two or more functions are more or less equally good, you
should present the results of each. Looking again at the illustration in Section 5.1, you can see that the
linear function explained 69 percent of the variance of Y, whereas the hyperbolic function (5.2)
explained 97 percent. In this instance we have no hesitation in choosing the latter.

However, when alternative models employ different functional forms for the dependent variable,
the problem of model selection becomes more complicated because you cannot make direct
comparisons of R’ or the sum of the squares of the residuals. In particular — and this is the most
common example of the problem — you cannot compare these statistics for linear and logarithmic
dependent variable specifications.

For example, in Section 2.6, the linear regression of expenditure on earnings on highest grade
completed has an R* of 0.104, and RSS was 34,420. For the semi-logarithmic version in Section 5.2,
the corresponding figures are 0.141 and 132. RSS is much smaller for the logarithmic version, but this
means nothing at all. The values of LGEARN are much smaller than those of EARNINGS, so it is
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hardly surprising that the residuals are also much smaller. Admittedly R is unit-free, but it is referring
to different concepts in the two equations. In one equation it is measuring the proportion of the
variance of earnings explained by the regression, and in the other it is measuring the proportion of the
variance of the logarithm of earnings explained. If R? is much greater for one model than for the other,
you would probably be justified in selecting it without further fuss. But if R is similar for the two
models, simple eyeballing will not do.

The standard procedure under these circumstances is to perform what is known as a Box-Cox test
(Box and Cox, 1964). If you are interested only in comparing models using Y and log Y as the
dependent variable, you can use a version developed by Zarembka (1968). It involves scaling the
observations on Y so that the residual sums of squares in the linear and logarithmic models are
rendered directly comparable. The procedure has the following steps:

1. You calculate the geometric mean of the values of Y in the sample. This is equal to the
exponential of the mean of log Y, so it is easy to calculate:

1 1

lZIOgY. - —
en= = " BN — (Y, XX Y, )" (5.35)

1
;log(le..xYn)
=e

2. You scale the observations on Y by dividing by this figure. So

*

Y, = Y./ geometric mean of Y, (5.36)

L

where Y, is the scaled value in observation i.

3. You then regress the linear model using Y* instead of Y as the dependent variable, and the
logarithmic model using log Y* instead of log Y, but otherwise leaving the models unchanged.
The residual sums of squares of the two regressions are now comparable, and the model with
the lower sum is providing the better fit.

4. To see if one model is providing a significantly better fit, you calculate (n/2) log Z where Z is
the ratio of the residual sums of squares in the scaled regressions and n is the number of
observations, and take the absolute value (that is, ignore a minus sign if present). Under the
null hypothesis that there is no difference, this statistic is distributed as a y* (chi-squared)
statistic with 1 degree of freedom. If it exceeds the critical level of ¥° at the chosen
significance level, you conclude that there is a significant difference in the fit.

Example

The test will be performed for the alternative specifications of the earnings function. The mean value
of LGEARN is 2.430133. The scaling factor is therefore exp(2.430133) = 11.3604. The residual sum
of squares in a regression of the Zarembka-scaled earnings on S is 266.7; the residual sum of squares
in a regression of the logarithm of Zarembka-scaled earnings is 132.1. Hence the test statistic is

57—Ologe 2667 =200.2 (5.37)
2 132.1
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The critical value of ¥* with 1 degree of freedom at the 0.1 percent level is 10.8. Hence there is no
doubt, according to this test, that the semi-logarithmic specification provides a better fit.

Note: the Zarembka-scaled regressions are solely for deciding which model you prefer. You
should not pay any attention to their coefficients, only to their residual sums of squares. You obtain
the coefficients by fitting the unscaled version of the preferred model.

Exercises

5.6  Perform a Box-Cox test parallel to that described in this section using your EAEF data set.

5.7 Linear and logarithmic Zarembka-scaled regressions of expenditure on food at home on total
household expenditure were fitted using the CES data set in Section 5.2. The residual sums of
squares were 225.1 and 184.6, respectively. The number of observations was 868, the
household reporting no expenditure on food at home being dropped. Perform a Box-Cox test
and state your conclusion.

5.8 Perform a Box-Cox test for your commodity in the CES data set, dropping households reporting
no expenditure on your commodity.

Appendix 5.1
A More General Box-Cox Test

(Note: This section contains relatively advanced material that can safely be omitted at a first reading).
The original Box-Cox procedure is more general than the version described in Section 5.5. Box
and Cox noted that Y — 1 and log Y are special cases of the function Y -~ 1A Y-1 being the function
when A is equal to 1, log Y being the (limiting form of the) function as A tends to 0. There is no reason
to suppose that either of these values of A is optimal, and hence it makes sense to try a range of values
and see which yields the minimum value of RSS (after performing the Zarembka scaling). This
exercise is known as a grid search. There is no purpose-designed facility for it in the typical
regression application, but nevertheless it is not hard to execute. If you are going to try 10 values of 4,
you generate within the regression application 10 new dependent variables using the functional form
and the different values of A, after first performing the Zarembka scaling. You then regress each of
these separately on the explanatory variables. Table 5.4 gives the results for food expenditure at
home, using the CES data set, for various values of A. The regressions were run with disposable

TABLE 5.4
A RSS A RSS
1.0 225.1 0.4 176.4
0.9 211.2 0.3 175.5
0.8 199.8 0.2 176.4
0.7 190.9 0.1 179.4
0.6 184.1 0.0 184.6

0.5 179.3
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personal income being transformed in the same way as Y, except for the Zarembka scaling. This is not
necessary; you can keep the right-side variable or variables in linear form if you wish, if you think this
appropriate, or you could execute a simultaneous, separate grid search for a different value of A for
them.

The results indicate that the optimal value of A is about 0.3. In addition to obtaining a point
estimate for A, one may also obtain a confidence interval, but the procedure is beyond the level of this
text. (Those interested should consult Spitzer, 1982.)
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It frequently happens that some of the factors that you would like to introduce into a regression model
are qualitative in nature and therefore not measurable in numerical terms. Some examples are the
following.

1. You are investigating the relationship between schooling and earnings, and you have both
males and females in your sample. You would like to see if the sex of the respondent makes a
difference.

2. You are investigating the relationship between income and expenditure in Belgium, and your
sample includes both Flemish-speaking and French-speaking households. You would like to
find out whether the ethnic difference is relevant.

3. You have data on the growth rate of GDP per capita and foreign aid per capita for a sample of
developing countries, of which some are democracies and some are not. You would like to
investigate whether the impact of foreign aid on growth is affected by the type of government.

In each of these examples, one solution would be to run separate regressions for the two
categories and see if the coefficients are different. Alternatively, you could run a single regression
using all the observations together, measuring the effect of the qualitative factor with what is known as
a dummy variable. This has the two important advantages of providing a simple way of testing
whether the effect of the qualitative factor is significant and, provided that certain assumptions are
valid, making the regression estimates more efficient.

6.1 lllustration of the Use of a Dummy Variable

We will illustrate the use of a dummy variable with a series of regressions investigating how the cost
of running a secondary school varies with the number of students and the type of school. We will take
as our starting point the model

COST = B, + BN + u, (6.1)
where COST is the annual recurrent expenditure incurred by a school and N is the number of students

attending it. Fitting a regression to a sample of 74 secondary schools in Shanghai in the mid-1980s
(for details, see the website), the Stata output is as shown:

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 27.04.01.
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. reg COST N

Source | Ss at MS Number of obs = 74
————————— oo F( 1, 72) =  46.82
Model | 5.7974e+11l 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
————————— e Adj R-squared = 0.3856
Total | 1.4713e+12 73  2.0155e+10 Root MSE = 1.1le+05
COST | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o o e
N | 339.0432  49.55144 6.842  0.000 240.2642 437.8222
cons | 23953.3  27167.96 0.882  0.381 -30205.04 78111.65

The regression equation is thus (standard errors in parentheses):

A 2
COST =24,000 + 339N R =039 (6.2)

(27,000) (50)

the cost being measured in yuan, one yuan being worth about 20 cents U.S. at the time of the survey.
The equation implies that the marginal cost per student is 339 yuan and that the annual overhead cost
(administration and maintenance) is 24,000 yuan.

This is just the starting point. Next we will investigate the impact of the type of school on the
cost. Occupational schools aim to provide skills for specific occupations and they tend to be relatively
expensive to run because they need to maintain specialized workshops. We could model this by having
two equations

COST = B, + BN + u, 6.3)

and
COST = B, + BN +u, (6.4)

the first equation relating to regular schools and the second to the occupational schools. Effectively,
we are hypothesizing that the annual overhead cost is different for the two types of school, but the
marginal cost is the same. The marginal cost assumption is not very plausible and we will relax it in

due course. Let us define § to be the difference in the intercepts: & = B, — Bi. Then B, = B + d and

we can rewrite the cost function for occupational schools as
COST =B+ 0+ N +u, (6.5)
The model is illustrated in Figure 6.1. The two lines show the relationship between the cost and the

number of students, neglecting the disturbance term. The line for the occupational schools is the same
as that for the regular schools, except that it has been shifted up by an amount &.
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Figure 6.1. Cost functions for regular and occupational schools

The object of the present exercise is to estimate this unknown shift factor, and we shall do this by
introducing what is known as a dummy variable. We shall rewrite the model

COST = B, + SOCC + BN + u (6.6)

where OCC is a dummy variable, an artificial variable with two possible values, 0 and 1. If OCC is
equal to 0, the cost function becomes (6.3), that for regular schools. If OCC is equal to 1, the cost
function becomes (6.5), that for occupational schools. Hence, instead of two separate regressions for
the different types of school, we can run just one regression using the whole sample. Using the whole

TaABLE 6.1

Recurrent Expenditure, Number
of Students, and Type of School

School Type COST N occ
1 Occupational 345,000 623 1
2 Occupational 537,000 653 1
3 Regular 170,000 400 0
4 Occupational 526,000 663 1
5 Regular 100,000 563 0
6 Regular 28,000 236 0
7 Regular 160,000 307 0
8 Occupational 45,000 173 1
9 Occupational 120,000 146 1

10 Occupational 61,000 99 1
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sample in a single regression will reduce the population variances of the coefficients, and this should
be reflected by smaller standard errors. We will also obtain a single estimate of f;, instead of two
separate ones that are likely to conflict. The price we have to pay is that we have to assume that f3; is
the same for both subsamples. We will relax this assumption in due course.

Data for the first 10 schools in the sample are shown in Table 6.1. Note how OCC varies with the
type of school.

. reg COST N OCC

Source | Ss af MS Number of obs = 74
————————— e F( 2, 71) = 56.86
Model | 9.0582e+11 2 4.5291e+11 Prob > F = 0.0000
Residual | 5.6553e+11 71 7.9652e+09 R-squared = 0.6156
————————— ot Adj R-squared = 0.6048
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 89248
COST | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o o o e e e o
N | 331.4493 39.75844 8.337 0.000 252.1732 410.7254

OoccC | 133259.1 20827.59 6.398 0.000 91730.06 174788.1

cons | -33612.55 23573.47 -1.426 0.158 -80616.71 13391.61

The data are fed into the computer regression program and multiple regression is used to regress
COST on N and OCC. OCC is treated exactly like an ordinary variable, even though it consists only
of Os and 1s.

The Stata output gives the results of the regression, using the full sample of 74 schools. In
equation form, we have (standard errors in parentheses):

COST = -34,000 + 133,0000CC +331N. R*=0.62 (6.7)
(24,000)  (21,000) (40)

Putting OCC equal to 0 and 1, respectively, we can obtain the implicit cost functions for the two
types of school.

Regular schools: COST = -34,000 + 331N (6.8)

Occupational schools: COST = -34,000 + 133,000 + 331N = 99,000 + 331N (6.9)

The regression implies that the marginal cost per student per year is 331 yuan and that the annual
overhead cost of a regular school is —34,000 yuan. Obviously having a negative intercept does not
make any sense at all and it suggests that the model is misspecified in some way. We will come back
to this later. The coefficient of the dummy variable, 133,000, is an estimate of the extra annual
overhead cost of an occupational school. The marginal cost of an occupational school is the same as
that for a regular school — it must be, given the model specification. Figure 6.2 shows the data and the
cost functions derived from the regression results.
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Figure 6.2. Cost functions for regular and occupational schools in Shanghai

Standard Errors and Hypothesis Testing

In addition to the estimates of the coefficients, the regression results include standard errors and the
usual diagnostic statistics. We will perform a ¢ test on the coefficient of the dummy variable. Our null

hypothesis is Hy: 6 = 0 and our alternative hypothesis is H;: 6 #0. In words, our null hypothesis is
that there is no difference in the overhead costs of the two types of school. The ¢ statistic is 6.40, so it
is rejected at the 0.1 percent significance level. We can perform ¢ tests on the other coefficients in the
usual way. The ¢ statistic for the coefficient of N is 8.34, so we conclude that the marginal cost is
(very) significantly different from 0. In the case of the intercept, the ¢ statistic is —1.43, so we do not
reject the null hypothesis Hy: 8 = 0. Thus one explanation of the nonsensical negative overhead cost
of regular schools might be that they do not actually have any overheads and our estimate is a random
number. A more realistic version of this hypothesis is that B, is positive but small (as you can see, the
95 percent confidence interval includes positive values) and the disturbance term is responsible for the
negative estimate. As already noted, a further possibility is that the model is misspecified in some
way.

Exercises

6.1  Using your FAEF data set, regress S on ASVABC, SM, SF and MALE, a dummy variable that is
1 for male respondents and O for female ones. Interpret the coefficients and perform ¢ tests. Is
there any evidence that the educational attainment of males is different from that of females?

6.2* The Stata output shows the result of regressing weight on height, first with a linear
specification, then with a double-logarithmic one, including a dummy variable MALE, defined
as in Exercise 6.1, in both cases. Give an interpretation of the equations and perform
appropriate statistical tests.
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g LGWEIGHT=1n (WEIGHTS85)

(20 missing values generated)
g LGHEIGHT=1n (HEIGHT)

(19 missing values generated)

reg WEIGHT85 HEIGHT MALE

Source | SS af MS Number of obs = 550
————————— o F( 2, 547) = 179.27
Model | 252465.351 2 126232.675 Prob > F = 0.0000
Residual | 385164.642 547 704.140113 R-squared = 0.3959
————————— b e Adj R-squared = 0.3937
Total | 637629.993 549 1161.43897 Root MSE = 26.536
WEIGHT85 | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ oo oo el ____
HEIGHT | 4.389971 .4313611 10.177 0.000 3.542644 5.237298
MALE | 10.74783 3.408249 3.153 0.002 4.05297 17.44269
_cons | -147.6628 27.9497 -5.283 0.000 -202.5647 -92.76089
reg LGWEIGHT LGHEIGHT MALE
Source | SS af MS Number of obs = 550
————————— o e F( 2, 547) = 216.63
Model | 10.9693142 2 5.48465712 Prob > F = 0.0000
Residual | 13.8491387 547 .025318352 R-squared = 0.4420
————————— b e Adj R-squared = 0.4399
Total | 24.8184529 549 .045206654 Root MSE = .15912
LGWEIGHT | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo o o e
LGHEIGHT | 1.901986 .1747121 10.886 0.000 1.558797 2.245174
MALE | .077839 .020447 3.807 0.000 .0376748 .1180032
_cons | -3.033228 .7283617 -4.164 0.000 -4.463957 -1.6025

6.3 Using your EAEF data set, regress LGEARN on S, ASVABC and MALE. Interpret the
coefficients and perform ¢ tests. (See Section 3 of the FAEF manual for help with the
interpretation of the coefficient of a dummy variable in a semi-logarithmic regression.)

6.2 Extension to More than Two Categories and to Multiple Sets of Dummy Variables

In the previous section we used a dummy variable to differentiate between regular and occupational
schools when fitting a cost function. In actual fact there are two types of regular secondary school in
Shanghai. There are general schools, which provide the usual academic education, and vocational
schools. As their name implies, the vocational schools are meant to impart occupational skills as well
as give an academic education. However the vocational component of the curriculum is typically
quite small and the schools are similar to the general schools. Often they are just general schools with
a couple of workshops added. Likewise there are two types of occupational school. There are
technical schools training technicians and skilled workers’ schools training craftsmen.

Thus now the qualitative variable has four categories and we need to develop a more elaborate set
of dummy variables. The standard procedure is to choose one category as the reference category to



DUMMY VARIABLES 7

TABLE 6.2

Recurrent Expenditure, Number of Students, and Type of School

School Type CoST N TECH WORKER vocC
1 Technical 345,000 623 1 0 0
2 Technical 537,000 653 1 0 0
3 General 170,000 400 0 0 0
4 Skilled workers' 526,000 663 0 1 0
5 General 100,000 563 0 0 0
6 Vocational 28,000 236 0 0 1
7 Vocational 160,000 307 0 0 1
8 Technical 45,000 173 1 0 0
9 Technical 120,000 146 1 0 0

10 Skilled workers' 61,000 99 0 1 0

which the basic equation applies, and then to define dummy variables for each of the other categories.
In general it is good practice to select the dominant or most normal category, if there is one, as the
reference category. In the Shanghai sample it is sensible to choose the general schools. They are the
most numerous and the other schools are variations of them.

Accordingly we will define dummy variables for the other three types. TECH will be the dummy
variable for the technical schools: TECH is equal to 1 if the observation relates to a technical school, 0
otherwise. Similarly we will define dummy variables WORKER and VOC for the skilled workers’
schools and the vocational schools. The regression model is now

COST = B, + 8;TECH + 84WORKER + 8,YOC + BN + u (6.10)

where 67, Oy, and Jy are coefficients that represent the extra overhead costs of the technical, skilled
workers’, and vocational schools, relative to the cost of a general school. Note that you do not include
a dummy variable for the reference category, and that is the reason that the reference category is
usually described as the omitted category. Note that we do not make any prior assumption about the
size, or even the sign, of the o coefficients. They will be estimated from the sample data.

Table 6.2 gives the data for the first 10 of the 74 schools. Note how the values of the dummy
variables TECH, WORKER, and VOC are determined by the type of school in each observation.

reg COST N TECH WORKER VOC

Source | SS af MS Number of obs = 74
————————— e F( 4, 69) = 29.63
Model | 9.299%6e+11 4 2.3249e+11 Prob > F = 0.0000
Residual | 5.4138e+11l 69 7.8461e+09 R-squared = 0.6320
————————— b e Adj R-squared = 0.6107
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578
COST | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692

TECH | 154110.9 26760.41 5.759 0.000 100725.3 207496 .4
WORKER | 143362.4 27852.8 5.147 0.000 87797.57 198927.2
vocC | 53228.64 31061.65 1.714 0.091 -8737.646 115194.9
_cons | -54893.09 26673.08 -2.058 0.043 -108104.4 -1681.748
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The Stata output gives the regression results for this model. In equation form, we have (standard
errors in parentheses):

COST = -55,000 + 154,000TECH + 143,000WORKER +53,000V0C + 343N R’=0.63 (6.11)
(27,000) (27,000) (28,000) (31,000) (40)

The coefficient of N indicates that the marginal cost per student per year is 343 yuan. The
constant indicates that the annual overhead cost of a general academic school is —55,000 yuan per
year. Obviously this is nonsense and indicates that something is wrong with the model. The
coefficients of TECH, WORKER, and VOC indicate that the overhead costs of technical, skilled
workers’, and vocational schools are 154,000 yuan, 143,000 yuan, and 53,000 yuan greater than the
cost of a general school.

From this equation we can obtain the implicit cost functions shown in the following diagram for
the four types of school. First, putting the three dummy variables equal to 0, we obtain the cost
function for general schools:

General schools: COST = —55,000 + 343N (6.12)

Next, putting TECH equal to 1 and WORKER and VOC to 0, we obtain the cost function for technical
schools:

Technical schools: COST = —55,000 + 154,000 + 343N = 99,000 + 343N (6.13)
And similarly we obtain the cost functions for skilled workers’ and vocational schools:
Skilled workers’ schools: COST = —-55,000 + 143,000 + 343N = 88,000 + 343N (6.14)

Vocational schools: COST = —55,000 + 53,000 + 343N = —2,000 + 343N (6.15)

Note that in each case the annual marginal cost per student is estimated at 343 yuan. The model
specification assumes that this figure does not differ according to type of school. The four cost
functions are illustrated in Figure 6.3.
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Figure 6.3.

We can perform ¢ tests on the coefficients in the usual way. The ¢ statistic for N is 8.52, so the
marginal cost is (very) significantly different from 0, as we would expect. The ¢ statistic for the
technical school dummy is 5.76, indicating that the annual overhead cost of a technical school is (very)
significantly greater than that of a general school, again as expected. Similarly for skilled workers’
schools, the ¢ statistic being 5.15. In the case of vocational schools, however, the ¢ statistic is only
1.71, indicating that the overhead cost of such a school is not significantly greater than that of a
general school. This is not surprising, given that the vocational schools are not much different from
the general schools. Note that the null hypotheses for the tests on the coefficients of the dummy
variables are that the overhead costs of the other schools are not different from the overhead cost of a
general school.

Joint Explanatory Power of a Group of Dummy Variables

Finally we will perform an F test of the joint explanatory power of the dummy variables as a
group. The null hypothesis is Hy: 6r = w = 0y = 0. The alternative hypothesis H, is that at least one &
is different from 0. The residual sum of squares in the specification including the dummy variables is
5.41x10"". (In the Stata output, it appears as 5.4138e+11. The e+11 means that the coefficient should
be multiplied by 10'".) The residual sum of squares in the original specification excluding the dummy
variables was 8.92x10"" (see Section 6.1). The reduction in RSS when we include the dummies is
therefore (8.92 - 5.41)x10". We will check whether this reduction is significant with the usual F test.

The numerator in the F ratio is the reduction in RSS divided by the cost, which is the 3 degrees of
freedom given up when we estimate three additional coefficients (the coefficients of the dummies).
The denominator is RSS for the specification including the dummy variables, divided by the number of
degrees of freedom remaining after they have been added. The F ratio is therefore given by
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(8.9160x10" —5.4138x10')/3 _ 1.1674 149

F(3,69) = = -
(3:69) 5.4138x10" /69 0.07846

(6.16)

Note that the ratios were calculated to four significant figures. This will ensure that the F statistic will
be correct to three significant figures. The critical value of F(3,69) will be a little below 6.17, the
critical value for F(3,60) at the 0.1 percent significance level, so we can reject Hy at this level. This is
only to be expected because ¢ tests showed that dr and 9y were both significantly different from 0, and
it is rare (but not impossible) for the F test not to reject Hy when one or more coefficients is
significant.

The Dummy Variable Trap

What would happen if you included a dummy variable for the reference category? There would be
two consequences. First, were it possible to compute regression coefficients, you would not be able to
give them an interpretation. The coefficient b, is a basic estimate of the intercept, and the coefficients
of the dummies are the estimates of the increase in the intercept from this basic level, but now there is
no definition of what is basic, so the interpretation collapses. The other consequence is that the
numerical procedure for calculating the regression coefficients will break down and the computer will
simply send you an error message (or possibly, in sophisticated applications, drop one of the dummies
for you). Suppose that there are m dummy categories and you define dummy variables Dy, ..., D,,.

m
Then, in observation i, ZD i = 1 because one of the dummy variables will be equal to 1 and all the
j=1

others will be equal to 0. But the intercept f; is really the product of the parameter 3; and a special
variable whose value is 1 in all observations (see the box in Section 4.2). Hence, for all observations,
the sum of the dummy variables is equal to this special variable, and one has an exact linear
relationship among the variables in the regression model. As a consequence the model is subject to a
special case of exact multicollinearity, making it impossible to compute regression coefficients..

Change of Reference Category

The skilled workers' schools are considerably less academic than the others, even the technical
schools. Suppose that we wish to investigate whether their costs are significantly different from the
others. The easiest way to do this is to make them the omitted category (reference category). Then
the coefficients of the dummy variables become estimates of the differences between the overhead
costs of the other types of school and those of the skilled workers' schools. Since skilled workers'
schools are now the reference category, we need a dummy variable, which will be called GEN, for the
general academic schools. The model becomes

COST = B, + 6;TECH + 6y,VOC + 0cGEN + [N + u (6.17)
where 6r, 9y, and & are the extra costs of technical, vocational, and general schools relative to skilled

workers’ schools. The data table for the first 10 schools is now as shown in Table 6.3. The Stata
output is shown.
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TABLE 6.3

Recurrent Expenditure, Enrolments and Type of School

School Type CoST N TECH GEN VOC
1 Technical 345,000 623 1 0 0
2 Technical 537,000 653 1 0 0
3 General 170,000 400 0 1 0
4 Skilled workers' 526,000 663 0 0 0
5 General 100,000 563 0 1 0
6 Vocational 28,000 236 0 0 1
7 Vocational 160,000 307 0 0 1
8 Technical 45,000 173 1 0 0
9 Technical 120,000 146 1 0 0

10 Skilled workers' 61,000 99 0 0 0

reg COST N TECH VOC GEN

Source | Ss at MS Number of obs = 74
————————— e F( 4, 69) = 29.63
Model | 9.2996e+11 4 2.3249%9e+11 Prob > F = 0.0000
Residual | 5.4138e+11 69 7.8461e+09 R-squared = 0.6320
————————— b e Adj R-squared = 0.6107
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 88578
COST | Coef std. Err t P>|t] [95% Conf. Intervall
_________ oo ool ____
N | 342.6335 40.2195 8.519 0.000 262.3978 422.8692

TECH | 10748.51 30524.87 0.352 0.726 -50146.93 71643.95
VvOoC | -90133.74 33984.22 -2.652 0.010 -157930.4 -22337.07

GEN | -143362.4 27852.8 -5.147 0.000 -198927.2 -87797.57

cons | 88469.29 28849.56 3.067 0.003 30916.01 146022.6

The regression equation is therefore (standard errors in parentheses):

COST = 88,000 + 11,000TECH — 143,000GEN — 90,000VOC + 343N R*=0.63 (6.18)
(29,000) (30,000) (28,000) (34,000) (40)

From this equation we can again obtain the implicit cost functions shown in the following diagram for

the four types of school. Putting all the dummy variables equal to 0, we obtain the cost function for
skilled workers’ schools:

Skilled workers’ schools: COST = 88,000 + 343N (6.19)

Then, putting TECH, WORKER, and GEN equal to 1 and the other two to 0, we derive the cost
functions for the other types of school:

Technical schools: COST = 88,000 + 11,000 + 343N = 99,000 + 343N (6.20)

Vocational schools: COST = 88,000 — 90,000 + 343N =-2,000 + 343N (6.21)
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General schools: COST = 88,000 — 143,000 + 343N = —55,000 + 343N (6.22)

Note that these equations are identical to those obtained when general schools were the reference
category. The choice of omitted category does not affect the substance of the regression results. The
only components that change are the standard errors and the interpretation of the ¢ tests. R’, the
coefficients of the other variables, the ¢ statistics for the other variables, and the F statistic for the
equation as a whole do not alter. And of course the diagram representing the four cost functions is the
same as before.

Multiple Sets of Dummy Variables

It may happen that you wish to include more than one set of dummy variables in your regression
equation. This is especially common when working with cross-section data, when you may have
gathered data on a number of qualitative as well as quantitative characteristics. There is no problem in
extending the use of dummy variables in this way, provided that the framework is defined clearly.

We will illustrate the procedure using the school cost data. Many of the occupational schools and
some of the regular schools are residential. We will investigate the extra cost of running a residential
school, controlling for number of students and type of school. To do this, we introduce a dummy
variable, RES, which is equal to 1 for residential schools and O for the others. For the sake of
simplicity we will revert to the occupational/regular classification of school type. The model now
becomes

COST = f3, + SOCC + €RES + BN + u (6.23)

where € is the extra cost of a residential school. The reference category now has two dimensions, one
for each qualitative characteristic. In this case it is a nonresidential (RES = 0), regular (OCC = 0)
school. Table 6.4 presents the data for the first 10 schools in the sample. The second, fourth and
seventh are residential schools and so RES is set equal to 1, while for the others it is 0.

TABLE 6.4

Recurrent Expenditure, Number of Students,
School Type and Whether Residential

School Type COST N OCC  RES
1 Occupational, nonresidential 345,000 623 1 0
2 Occupational, residential 537,000 653 1 1
3 Regular, nonresidential 170,000 400 0 0
4 Occupational, residential 526,000 663 1 1
5 Regular, nonresidential 100,000 563 0 0
6 Regular, nonresidential 28,000 236 0 0
7 Regular, residential 160,000 307 0 1
8 Occupational, nonresidential 45,000 173 1 0
9 Occupational, nonresidential 120,000 146 1 0

10 Occupational, nonresidential 61,000 99 1 0
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The Stata regression results are as shown:

. reg COST N OCC RES

Source | Ss at MS Number of obs = 74
————————— e F( 3, 70) =  40.43
Model | 9.3297e+1l 3 3.1099%e+11 Prob > F = 0.0000
Residual | 5.3838e+11 70 7.6911e+09 R-squared = 0.6341
————————— e Adj R-squared = 0.6184
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 87699
 cosT | Coef. std. Err. € Bslt|  [95% conf. Interval]
_________ o
N | 321.833  39.40225 8.168  0.000 243.2477 400.4183
OCC |  109564.6  24039.58 4.558  0.000 61619.15 157510
RES | 57909.01  30821.31 1.879 0.064 -3562.137 119380.2
cons | -29045.27  23291.54 -1.247  0.217 -75498.78 17408.25
The regression equation is therefore (standard errors in parentheses):
COST = 29,000 + 110,0000CC + 58,000RES + 322N R*=0.63 (6.24)
(23,000) (24,000) (31,000) 39)
Using the four combinations of OCC and RES, one may obtain the following subequations:
Regular, nonresidential: COST = -29,000 + 322N (6.25)
Occupational, nonresidential: C OST = -29,000 + 110,000 + 322N
= 81,000 + 322N (6.26)
Regular, residential: COST = -29,000 + 58,000 + 322N
=29,000 + 322N (6.27)
Occupational, residential: COST = —29.,000 + 110,000 + 58,000 + 322N
= 139,000 + 322N (6.28)

The cost functions are illustrated in Figure 6.4. Note that the model incorporates the (plausible)
assumption that the extra cost of a residential school is the same for regular and occupational schools.

The ¢ statistic for the residential dummy is only 1.88. However, we can perform a one-tailed test
because it is reasonable to exclude the possibility that residential schools cost less to run than
nonresidential ones, and so we can reject the null hypothesis of no difference in the costs at the 5
percent level.

The procedure may be generalized, with no limit on the number of qualitative characteristics in
the model or the number of categories defined for each characteristic.
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Figure 6.4.
Exercises

6.4* Does ethnicity affect educational attainment? In your EAEF data set you will find the following
ethnic dummy variables:

ETHHISP 1 if hispanic, O otherwise
ETHBIACK 1 if black, O otherwise
ETHWHITE 1 if not hispanic or black, 0 otherwise.

Regress § on ASVABC, MALE, SM, SF, ETHBLACK and ETHHISP. (In this specification
ETHWHITE has been chosen as the reference category, and so it is omitted.) Interpret the
regression results and perform ¢ tests on the coefficients.

6.5" reg LGEARN EDUCPROF EDUCPHD EDUCMAST EDUCBA EDUCAA EDUCGED EDUCDO ASVABC MALE

Source | SS at MS Number of obs = 570
————————— s mmm s mmm—m e mm—m—m— o F( 9, 560) = 17.67
Model | 34.0164091 9 3.77960101 Prob > F = 0.0000
Residual | 119.785484 560 .213902649 R-squared = 0.2212
————————— e Adj R-squared = 0.2087
Total | 153.801893 569 .270302096 Root MSE = .4625
LGEARN | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o o o o o e
EDUCPROF .3860621 .1789987 2.157 0.031 .0344711 .737653
EDUCPHD -.3376001 .4654787 -0.725 0.469 -1.251898 .5766974
EDUCMAST .3539022 .0876093 4.040 0.000 .1818193 .5259851
EDUCBA .2917556 .0563315 5.179 0.000 .1811087 .4024026
EDUCAA .0671492 .0727099 0.924 0.356 -.0756682 .2099665
EDUCGED -.1448539 .0819881 -1.767 0.078 -.3058956 .0161879
EDUCDO -.0924651 .0782349 -1.182 0.238 -.2461348 .0612046
ASVABC .0110694 .0026095 4.242 0.000 .0059439 .016195
MALE .2103497 .0394895 5.327 0.000 .1327841 .2879153
_cons | 1.685005 .1294621 13.015 0.000 1.430714 1.939295
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The Stata output shows the result of a semilogarithmic regression of earnings on highest
educational qualification obtained, ASVABC score, and the sex of the respondent, the
educational qualifications being a professional degree, a PhD, a Master’s degree, a Bachelor’s
degree, an Associate of Arts degree, a general equivalence diploma, and no qualification (high
school drop-out). The GED is a qualification equivalent to a high school diploma. The high
school diploma was the reference category. Provide an interpretation of the coefficients and
perform 7 tests.

6.6  Are earnings subject to ethnic discrimination? Using your FAEF data set, regress LGEARN on
S, ASVABC, MALE, ETHHISP and ETHBLACK. Interpret the regression results and perform ¢
tests on the coefficients.

6.7 Does belonging to a union have an impact on earnings? In the output below, COLLBARG is a
dummy variable defined to be 1 for workers whose wages are determined by collective
bargaining and O for the others. Provide an interpretation of the regression coefficients and
perform appropriate statistical tests.

. reg LGEARN S ASVABC MALE COLLBARG

Source | SS af MS Number of obs = 570
————————— oo mmm oo mmmmm o F( 4, 565) = 40.65
Model | 34.3688209 4 8.59220523 Prob > F = 0.0000
Residual | 119.433072 565 .211385968 R-squared = 0.2235
————————— b e Adj R-squared = 0.2180
Total | 153.801893 569 .270302096 Root MSE = .45977
LGEARN | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo oo el ____
S | .0597083 .0096328 6.198 0.000 .0407879 .0786287

ASVABC | .0100311 .002574 3.897 0.000 .0049753 .0150868
MALE | .2148213 .0391191 5.491 0.000 .1379846 .291658
COLLBARG | .1927604 .0614425 3.137 0.002 .0720769 .313444
_cons | .9759561 .1225332 7.965 0.000 .7352799 1.216632

6.8* Evaluate whether the ethnicity dummies as a group have significant explanatory power for
educational attainment by comparing the residual sums of squares in the regressions in
Exercises 6.1 and 6.4.

6.9 Evaluate whether the ethnicity dummies as a group have significant explanatory power for
earnings by comparing the residual sums of squares in the regressions in Exercises 6.3 and 6.6.

6.10* Repeat Exercise 6.4 making ETHBLACK the reference category. Evaluate the impact on the
interpretation of the coefficients and the statistical tests.

6.11 Repeat Exercise 6.6 making ETHBLACK the reference category. Evaluate the impact on the
interpretation of the coefficients and the statistical tests.

6.3 Slope Dummy Variables

We have so far assumed that the qualitative variables we have introduced into the regression model are
responsible only for shifts in the intercept of the regression line. We have implicitly assumed that the



DUMMY VARIABLES 16

slope of the regression line is the same for each category of the qualitative variables. This is not
necessarily a plausible assumption, and we will now see how to relax it, and test it, using the device
known as a slope dummy variable (also sometimes known as an interactive dummy variable).

To illustrate this, we will return to the school cost example. The assumption that the marginal
cost per student is the same for occupational and regular schools is unrealistic because occupational
schools incur expenditure on training materials related to the number of students and the staff-student
ratio has to be higher in occupational schools because workshop groups cannot be, or at least should
not be, as large as academic classes. We can relax the assumption by introducing the slope dummy
variable, NOCC, defined as the product of N and OCC:

COST = B, + 60CC + BN + ANOCC + u (6.29)

If this is rewritten
COST = B; + 00CC + (B, + AOCO)N + u, (6.30)
it can be seen that the effect of the slope dummy variable is to allow the coefficient of N for
occupational schools to be A greater than that for regular schools. If OCC is 0, so is NOCC and the

equation becomes
COST= i+ BN +u (6.31)

If OCCis 1, NOCC is equal to N and the equation becomes

COST=Bi+ 6+ (B+AN+u (6.32)
A is thus the incremental marginal cost associated with occupational schools, in the same way that Jis

the incremental overhead cost associated with them. Table 6.5 gives the data for the first 10 schools in
the sample.

TABLE 6.5

Recurrent Expenditure, Number of
Students, and School Type

School Type COST N occ Nocc
1 Occupational 345,000 623 1 623
2 Occupational 537,000 653 1 653
3 Regular 170,000 400 0 0
4 Occupational 526,000 663 1 663
5 Regular 100,000 563 0 0
6 Regular 28,000 236 0 0
7 Regular 160,000 307 0 0
8 Occupational 45,000 173 1 173
9 Occupational 120,000 146 1 146

10 Occupational 61,000 99 1 99
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g NOCC=N*OCC

reg COST N OCC NOCC

Source | SS af MS Number of obs
————————— e F( 3, 70)
Model | 1.0009e+12 3 3.3363e+ll Prob > F
Residual | 4.7045e+11 70 6.7207e+09 R-squared
————————— b e Adj R-squared
Total | 1.4713e+12 73 2.0155e+10 Root MSE
COST | Coef.  Std. Err. t P>|t| [95% Conf.
_________ o o
N | 152.2982  60.01932 2.537  0.013 32.59349
ocC | -3501.177  41085.46 -0.085  0.932 -85443.55
NoCC | 284.4786  75.63211 3.761  0.000 133.6351
cons | 51475.25  31314.84 1.644  0.105 -10980.24

74
= 49.64
0.0000
0.6803
0.6666

81980

Interval]
272.003
78441.19
435.3221
113930.7

From the Stata output we obtain the regression equation (standard errors in parentheses):

COST = 51,000 — 4,0000CC + 152N + 284NOCC
(31,000) (41,000) (60) (76)

R*=0.68.

17

(6.33)

Putting OCC, and hence NOCC, equal to 0, we get the cost function for a regular school. We estimate

that the annual overhead cost is 51,000 yuan and the annual marginal cost per student is 152 yuan.

Regular schools: COST = 51,000 + 152N

COST
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Figure 6.5. School cost functions with a slope dummy variable

(6.34)
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Putting OCC equal to 1, and hence NOCC equal to N, we estimate that the annual overhead cost of an
occupational school is 47,000 yuan and the annual marginal cost per student is 436 yuan.

Occupational schools: COST = 51,000 — 4,000 + 152N + 284N
=47,000 + 436N (6.35)

The two cost functions are shown in Figure 6.5. You can see that they fit the data much better
than before and that the real difference is in the marginal cost, not the overhead cost. We can now see
why we had a nonsensical negative estimate of the overhead cost of a regular school in previous
specifications. The assumption of the same marginal cost led to an estimate of the marginal cost that
was a compromise between the marginal costs of occupational and regular schools. The cost function
for regular schools was too steep and as a consequence the intercept was underestimated, actually
becoming negative and indicating that something must be wrong with the specification of the model.

We can perform ¢ tests as usual. The ¢ statistic for the coefficient of NOCC is 3.76, so the
marginal cost per student in an occupational school is significantly higher than that in a regular school.
The coefficient of OCC is now negative, suggesting that the overhead cost of an occupational school is
actually lower than that of a regular school. This is unlikely. However, the # statistic is only —0.09, so
we do not reject the null hypothesis that the overhead costs of the two types of school are the same.

Joint Explanatory Power of the Intercept and Slope Dummy Variables

The joint explanatory power of the intercept and slope dummies can be tested with the usual F test for
a group of variables, comparing RSS when the dummy variables are included with RSS when they are
not. The null hypothesis is Hy: 6 = A = 0. The alternative hypothesis is that one or both are nonzero.
The numerator of the F statistic is the reduction in RSS when the dummies are added, divided by the
cost in terms of degrees of freedom. RSS in the regression without the dummy variables was
8.9160x 10", and in the regression with the dummy variables it was 4.7045x10". The cost is 2
because 2 extra parameters, the coefficients of the dummy variables, have been estimated, and as a
consequence the number of degrees of freedom remaining has been reduced from 72 to 70. The
denominator of the F statistic is RSS after the dummies have been added, divided by the number of
degrees of freedom remaining. This is 70 because there are 74 observations and 4 parameters have
been estimated. The F statistic is therefore

(8.9160x10"" —4.7045%10'")/2

F(2,70) =
4.7045x10" /70

=313 (6.36)

The critical value of F(2,70) at the 0.1 percent significance level is a little below 7.77, the critical
value for F(2,60), so we come to the conclusion that the null hypothesis should be rejected. This is not
a surprise because we know from the ¢ tests that A is significantly different from 0.
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Exercises

6.12*

6.13*

6.14

6.15

Is the effect of the ASVABC score on educational attainment different for males and females?
Using your EAEF data set, define a slope dummy variable MALEASVC as the product of MALE
and ASVABC:

MALEASVC = MALE*ASVABC

Regress S on ASVABC, SM, SF, ETHBLACK, ETHHISP, MALE and MALEASVC, interpret the
equation and perform appropriate statistical tests.

Is the effect of education on earnings different for members of a union? In the output below,
COLLBARG is a dummy variable defined to be 1 for workers whose wages are determined by
collective bargaining and O for the others. SBARG is a slope dummy variable defined as the
product of § and COLLBARG. Provide an interpretation of the regression coefficients,
comparing them with those in Exercise 6.7, and perform appropriate statistical tests.

. g SBARG=S*COLLBARG

. reg LGEARN S ASVABC MALE COLLBARG SBARG

Source | SS af MS Number of obs = 570
————————— R e it F( 5, 564) = 35.40
Model | 36.7418126 5 7.34836253 Prob > F = 0.0000
Residual | 117.06008 564 .207553333 R-squared = 0.2389
————————— b e Adj R-squared = 0.2321
Total | 153.801893 569 .270302096 Root MSE = .45558
LGEARN | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ oo oo el ____
S | .0695614 .0099799 6.970 0.000 .049959 .0891637

ASVABC | .0097345 .0025521 3.814 0.000 .0047218 .0147472
MALE | .2153046 .0387631 5.554 0.000 .1391668 .2914423
COLLBARG | 1.334913 .3432285 3.889 0.000 .6607513 2.009076
SBARG | -.0839265 .0248208 -3.381 0.001 -.1326789 -.035174
_cons | .8574219 .1263767 6.785 0.000 .6091955 1.105648

Is the effect of education on earnings different for males and females? Using your EAEF data
set, define a slope dummy variable MALES as the product of MALE and S:

MALES = MALE*S

Regress LGEARN on S, ASVABC, ETHBLACK, ETHHISP, MALE and MALES, interpret the
equation and perform appropriate statistical tests.

Are there ethnic variations in the effect of the sex of a respondent on educational attainment? A
special case of a slope dummy variable is the interactive dummy variable defined as the product
of two dummy variables. Using your EAEF data set, define interactive dummy variables
MALEBIAC and MALEHISP as the product of MALE and ETHBLACK, and of MALE and
ETHHISP, respectively:

MALEBIAC = MALE*ETHBLACK
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MALEHISP = MALE*ETHHISP

Regress S on ASVABC, SM, SF, MALE, ETHBLACK, ETHHISP, MALEBLAC and MALEHISP.
Interpret the regression results and perform appropriate statistical tests.

6.4 The Chow Test

It sometimes happens that your sample of observations consists of two or more subsamples, and you
are uncertain about whether you should run one combined regression or separate regressions for each
subsample. Actually, in practice the choice is not usually as stark as this, because there may be some
scope for combining the subsamples, using appropriate dummy and slope dummy variables to relax
the assumption that all the coefficients must be the same for each subsample. This is a point to which
we shall return.

Suppose that we have a sample consisting of two subsamples and that you are wondering whether
to combine them in a pooled regression, P or to run separate regressions, A and B. We will denote the

residual sums of squares for the subsample regressions RSS, and RSSz. We will denote RSS} and

RSS; the sum of the squares of the residuals in the pooled regression for the observations belonging
to the two subsamples. Since the subsample regressions minimize RSS for their observations, they

must fit them as least as well as, and generally better than, the pooled regression. Thus RSS, < RSS”
and RSS; < RSS ,’; , and so (RSSs + RSSp)< RSSp, where RSSp, the total sum of the squares of the

residuals in the pooled regression, is equal to the sum of RSS} and RSS} .

Equality between RSSp and (RSS, + RSSp) will occur only when the regression coefficients for the
pooled and subsample regressions coincide. In general, there will be an improvement (RSSp — RSS4 —
RSSp) when the sample is split up. There is a price to pay, in that k extra degrees of freedom are used
up, since instead of k parameters for one combined regression we now have to estimate 2k in all. After
breaking up the sample, we are still left with (RSSs + RSSp) (unexplained) sum of squares of the
residuals, and we have n — 2k degrees of freedom remaining.

We are now in a position to see whether the improvement in fit when we split the sample is
significant. We use the F statistic

F(k.n—2k) = improvement in RSS/degrees of freedom used up

remaining RSS/degrees of freedom remaining
_(RSS, —RSS, —RSS;)/k
(RSS , +RSSp)/(n—2k)

(6.37)

which is distributed with k and n — 2k degrees of freedom under the null hypothesis of no significant
improvement in fit.

We will illustrate the test with reference to the school cost function data, making a simple
distinction between regular and occupational schools. We need to run three regressions. In the first
we regress COST on N using the whole sample of 74 schools. We have already done this in Section
6.1. This is the pooled regression. We make a note of RSS for it, 8.9160x 10", In the second and
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Figure 6.6. Pooled and subsample regression lines
reg COST N if OCC==
Source | SS af MS Number of obs = 40
————————— e F( 1, 38) = 13.53
Model | 4.3273e+10 1 4.3273e+10 Prob > F = 0.0007
Residual | 1.2150e+11 38 3.1973e+09 R-squared = 0.2626
————————— e Adj R-squared = 0.2432
Total | 1.6477e+11 39 4.2249%9e+09 Root MSE 56545
COST | Coef std. Err t P>|t] [95% Conf. Intervall
_________ o o o oo o e e e eemolo_
N | 152.2982 41.39782 3.679 0.001 68.49275 236.1037
cons | 51475.25 21599.14 2.383 0.022 7750.064 95200.43
reg COST N if OCC==
Source | SS at MS Number of obs = 34
————————— oo F( 1, 32) = 55.52
Model | 6.0538e+11 1 6.0538e+11 Prob > F = 0.0000
Residual | 3.4895e+11 32 1.0905e+10 R-squared = 0.6344
————————— e Adj R-squared = 0.6229
Tota1| 9.5433e+11 33 2.8919%e+10 Root MSE = 1.0e+05
COST | Coef Std. Err t P>|t] [95% Conf. Intervall
_________ o o o oo o e e e emolo -
N | 436.7769 58.62085 7.451 0.000 317.3701 556.1836
cons | 47974 .07 33879.03 1.416 0.166 -21035.26 116983 .4

third we run the same regression for the two subsamples of regular and occupational schools

separately and again make a note of RSS. The regression lines are shown in Figure 6.6.

RSS is 1.2150x 10" for the regular schools and 3.4895x 10" for the occupational schools. The
total RSS from the subsample regressions is therefore 4.7045x 10", 1t is lower than RSS for the
pooled regression because the subsample regressions fit their subsamples better than the pooled
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regression. The question is whether the difference in the fit is significant, and we test this with an F
test. The numerator is the improvement in fit on splitting the sample, divided by the cost (having to
estimate two sets of parameters instead of only one). In this case it is (8.9160 — 4.7045)x 10" divided
by 2 (we have had to estimate two intercepts and two slope coefficients, instead of only one of each).
The denominator is the joint RSS remaining after splitting the sample, divided by the joint number of
degrees of freedom remaining. In this case it is 4.7045x 10" divided by 70 (74 observations, less four
degrees of freedom because two parameters were estimated in each equation). When we calculate the
F statistic the 10" factors cancel out and we have

42115x10" /2
4.7045x10" /70

F(2,70) = (6.38)

The critical value of F(2,70) at the 0.1 percent significance level is a little below 7.77, the critical
value for F(2,60), so we come to the conclusion that there is a significant improvement in the fit on
splitting the sample and that we should not use the pooled regression.

Relationship between the Chow Test and the F Test of
the Explanatory Power of a Set of Dummy Variables

In this chapter we have used both dummy variables and a Chow test to investigate whether there are
significant differences in a regression model for different categories of a qualitative characteristic.
Could the two approaches have led to different conclusions? The answer is no, provided that a full set
of dummy variables for the qualitative characteristic has been included in the regression model, a full
set being defined as an intercept dummy, assuming that there is an intercept in the model, and a slope
dummy for each of the other variables. The Chow test is then equivalent to an F test of the
explanatory power of the dummy variables as a group.

To simplify the discussion, we will suppose that there are only two categories of the qualitative
characteristic, as in the example of the cost functions for regular and occupational schools. Suppose
that you start with the basic specification with no dummy variables. The regression equation will be
that of the pooled regression in the Chow test, with every coefficient a compromise for the two
categories of the qualitative variable. If you then add a full set of dummy variables, the intercept and
the slope coefficients can be different for the two categories. The basic coefficients will be chosen so
as to minimize the sum of the squares of the residuals relating to the reference category, and the
intercept dummy and slope dummy coefficients will be chosen so as to minimize the sum of the
squares of the residuals for the other category. Effectively, the outcome of the estimation of the
coefficients is the same as if you had run separate regressions for the two categories.

In the school cost function example, the implicit cost functions for regular and operational
schools with a full set of dummy variables (in this case just an intercept dummy and a slope dummy
for N), shown in Figure 6.5, are identical to the cost functions for the subsample regressions in the
Chow test, shown in Figure 6.6. It follows that the improvement in the fit, as measured by the
reduction in the residual sum of squares, when one adds the dummy variables to the basic specification
is identical to the improvement in fit on splitting the sample and running subsample regressions. The
cost, in terms of degrees of freedom, is also the same. In the dummy variable approach you have to
add an intercept dummy and a slope dummy for each variable, so the cost is k if there are k — 1
variables in the model. In the Chow test, the cost is also k because you have to estimate 2k parameters
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instead of k£ when you split the sample. Thus the numerator of the F statistic is the same for both tests.
The denominator is also the same because in both cases it is the residual sum of squares for the
subsample regressions divided by n — 2k. In the case of the Chow test, 2k degrees of freedom are used
up when fitting the separate regressions. In the case of the dummy variable group test, k degrees of
freedom are used up when estimating the original intercept and slope coefficients, and a further k
degrees of freedom are used up estimating the intercept dummy and the slope dummy coefficients.

What are the advantages and disadvantages of the two approaches? The Chow test is quick. You
just run the three regressions and compute the test statistic. But it does not tell you how the functions
differ, if they do. The dummy variable approach involves more preparation because you have to
define a dummy variable for the intercept and for each slope coefficient. However, it is more
informative because you can perform ¢ tests on the individual dummy coefficients and they may
indicate where the functions differ, if they do.

Exercises

6.16* Are educational attainment functions are different for males and females? Using your EAEF
data set, regress S on ASVABC, ETHBLACK, ETHHISP, SM, and SF (do not include MALE).
Repeat the regression using only the male respondents. Repeat it again using only the female
respondents. Perform a Chow test.

6.17 Are earnings functions different for males and females? Using your EAEF data set, regress
LGEARN on S, ASVABC, ETHBLACK, and ETHHISP (do not include MALE). Repeat the
regression using only the male respondents. Repeat it again using only the female respondents.
Perform a Chow test.

6.18* Are there differences in male and female educational attainment functions? This question has
been answered by Exercise 6.16 but nevertheless it is instructive to investigate the issue using
the dummy variable approach. Using your FAEF data set, define the following slope dummies
combining MALE with the parental education variables:

MALESM = MALE*SM
MALESF = MALE*SF

and regress S on ETHBLACK, ETHHISP, ASVABC, SM, SF, MALE, MALEBLAC, MALEHISP
(defined in Exercise 6.15), MALEASVC (defined in Exercise 6.12), MALESM, and MALESF.
Next regress S on ETHBLACK, ETHHISP, ASVABC, SM, and SF only. Perform an F test of the
joint explanatory power of MALE and the slope dummy variables as a group (verify that the F
statistic is the same as in Exercise 6.16) and perform ¢ tests on the coefficients of the slope
dummy variables in the first regression.

6.19 Where are the differences in male and female earnings functions? Using your EAEF data set,
regress LGEARN on S, ASVABC, ETHBLACK, ETHHISP, MALE, MALES, MALEASVC,
MALEBLAC, and MALEHISP. Next regress LGEARN on S, ASVABC, ETHBLACK, and
ETHHISP only. Calculate the correlation matrix for MALE and the slope dummies. Perform an
F test of the joint explanatory power of MALE and the slope dummies (verify that the F statistic
is the same as in Exercise 6.17) and perform ¢ tests on the coefficients of the dummy variables.



SPECIFICATION OF
REGRESSION VARIABLES:
A PRELIMINARY SKIRMISH

What are the consequences of including in the regression model a variable that should not be there?
What are the consequences of leaving out a variable that should be included? What happens if you
have difficulty finding data on a variable and use a proxy instead? This chapter is a preliminary
skirmish with these issues in the sense that it focuses on the consequences of variable misspecification,
rather than on procedures for model selection, a much more complex subject that is left to later in the
text. The chapter concludes by showing how simple restrictions on the parameters can be tested.

7.1 Model Specification

The construction of an economic model involves the specification of the relationships that constitute
it, the specification of the variables that participate in each relationship, and the mathematical function
representing each relationship. The last element was discussed in Chapter 5. In this chapter, we will
consider the second element, and we will continue to assume that the model consists of just one
equation. We will discuss the application of regression analysis to models consisting of systems of
simultaneous relationships in Chapter 10.

If we know exactly which explanatory variables ought to be included in the equation when we
undertake regression analysis, our task is limited to calculating estimates of their coefficients,
confidence intervals for these estimates, and so on. In practice, however, we can never be sure that we
have specified the equation correctly. Economic theory ought to provide a guide, but theory is never
perfect. Without being aware of it, we might be including some variables that ought not to be in the
model, and we might be leaving out others that ought to be included.

The properties of the regression estimates of the coefficients depend crucially on the validity of
the specification of the model. The consequences of misspecification of the variables in a relationship
are summarized in Table 7.1.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 01.05.01.
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TaBLE 7.1

Consequences of Variable Specification

True Model

Y=8+B,X,+u

Y=3+B,X,+B,X,+u

Y=b+b,X,

Correct specification,
no problems

Coefficients are biased
(in general). Standard

errors are invalid

Coefficients are unbiased
(in general) but inefficient.
Standard errors are
valid (in general).

Fitted Model

Correct specification,

Y=b+b, X, +b, X, no problems

1. If you leave out a variable that ought to be included, the regression estimates are in general

(but not always) biased. The standard errors of the coefficients and the corresponding ¢ tests
are in general invalid.

2. If you include a variable that ought not to be in the equation, the regression coefficients are in
general (but not always) inefficient but not biased. The standard errors are in general valid
but, because the regression estimation is inefficient, they will be needlessly large.

We will begin by discussing these two cases and then come to some broader issues of model

specification.

7.2 The Effect of Omitting a Variable that Ought to be Included

The Problem of Bias
Suppose that the dependent variable Y depends on two variables X, and X3 according to a relationship

Y =0+ BXo + B:Xs +u, (7.1
but you are unaware of the importance of X5. Thinking that the model should be
Y=0+BXo+u, (7.2)

you use regression analysis to fit

Y =b + b:Xo, (7.3)
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effect of X3

direct effect

of Xz, holding

Xs constant apparent effect of
\ Xo, acting as a

mimic for X3

Xo X3

Figure 7.1.

and you calculate b, using the expression Cov(X;, Y)/Var(X,), instead of the correct expression

b = Cov(X,,Y)Var(X;)—Cov(X;,Y)Cov(X,, X5)

: (7.4)
Var(X,)Var(X5) —[Cov(X,, X ;)]

By definition, b, is an unbiased estimator of 3, if and only if E(b,) is equal to . In fact, if (7.1) is
true,

Cov(X,, X3)

E[w a5)
Var(X,)

Var(X,) }ﬁz A
We shall give first an intuitive explanation of this and then a formal proof.

If X; is omitted from the regression model, X, will appear to have a double effect, as illustrated in
Figure 7.1. It will have a direct effect and also a proxy effect when it mimics the effect of X;. The
apparent indirect effect of X, on Y depends on two factors: the apparent ability of X, to mimic X3, and
the effect of X5 on Y.

The apparent ability of X, to explain Xj is determined by the slope coefficient 4 in the pseudo-
regression

X, =g +hX,. (7.6)

h of course is given by the usual simple regression formula, in this case Cov(X,, X3)/Var(X;). The
effect of X3 on Y is 33, so the mimic effect via X3 may be written 83 Cov(X, X3)/Var(X,). The direct
effect of X, on Y is 3, and hence when Y is regressed on X,, omitting X3, the coefficient of X, is given
by

Cov(X,, X5)

B, + Bs Var(X,)

+ sampling error .7
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Provided that X, and X; are nonstochastic, the expected value of the coefficient will be the sum of
the first two terms. The presence of the second term implies that in general the expected value of the
coefficient will be different from the true value 3, and therefore biased.

The formal proof of (7.5) is straightforward. We begin by making a theoretical expansion of the
estimator b;:

_ Cov(X,,Y) _ Cov(X,,[B,+ B, X, + ;X5 +ul)

h =

Var(X,) Var(X,)
= ;[COV(Xz’ﬁl)+C0V(Xzaﬁ2X2) +Cov(X,,B;X5) +C0V(Xz’u)]
Var(X,) 78)
) .

= Var(X)) [0+ B,Var(X,) + B,Cov(X,, X ;) +Cov(X,,u)]

_ Cov(X,,X5) Cov(X,,u)
=P+ b Var(X,) " Var(X,)

Provided that X, and X; are nonstochastic, the first two terms are unaffected when we take
expectations and the third is 0. Hence we obtain (7.5).

This confirms our earlier intuitive conclusion that b, is biased by an amount
BsCov(Xs, X3)/Var(X,). The direction of the bias will depend on the signs of 5 and Cov(X,, X3). For
example, if B is positive and the covariance is positive, the bias will be positive and b, will tend to
overestimate f3,. There is, however, one exceptional case where b, is unbiased after all. That is when
the sample covariance between X, and X3 happens to be exactly 0. If Cov(X,, X3) is 0, the bias term
disappears. Indeed, the regression coefficient obtained using simple regression will be exactly the
same as if you had used a properly specified multiple regression. Of course, the bias term would also
be 0 if B; were 0, but then the model is not misspecified.

Invalidation of the Statistical Tests
Another serious consequence of omitting a variable that ought to be included in the regression is that

the standard errors of the coefficients and the test statistics are in general invalidated. This means of
course that you are not in principle able to test any hypotheses with your regression results.

Example

The problem of omitted variable bias will first be illustrated with the educational attainment function
using FAEF Data Set 21. For the present purposes, it will be assumed that the true model is

S = B+ BASVABC + B;SM + u, (7.9)
although obviously this is a great oversimplification. The first part of the regression output shows the

result of this regression. The second and third parts of the output then show the effects of omitting SM
and ASVABC, respectively.
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reg S ASVABC SM

Source |

Model |
Residual |

1230.2039
2224.04347

= 570
= 156.81
.0000
.3561
.3539
.9805

]
H O o

|
SM |
|

.1381062
.154783
4.791277

.1572556
.2236715
5.793475

reg S ASVABC

Source |

Model |
Residual |

.80864
.43873

= 570
= 284.89
.0000
.3340
.3329

]
N O o

.0125

.1545378
5.770845

.1725213
6.687803

reg S SM
Source |

Model |
Residual |

443.110436
3011.13693

= 570
= 83.59
.0000
.1283
.1267
.3025

Il
N O o o

.3445198
9.5064091

Interval]

.4185354
10.38952

daf MS Number of obs
F( 2, 567)
2 615.101949 Prob > F
567 3.92247526 R-squared
Adj R-squared
569 6.07073351 Root MSE
std. Err t P>|t] [95% Conf.
.0097494 14.166 0.000 .1189567
.0350728 4.413 0.000 .0858946
.5102431 9.390 0.000 3.78908
dat MS Number of obs
F( 1, 568)
1 1153.80864 Prob > F
568 4.05006818 R-squared
Adj R-squared
569 6.07073351 Root MSE
Sstd. Err t P>|t] [95% Conf.
.0091559 16.879 0.000 .1365543
.4668473 12.361 0.000 4.853888
daf MS Number of obs
F( 1, 568)
1 443.110436 Prob > F
568 5.30129742 R-squared
Adj R-squared
569 6.07073351 Root MSE
std. Err t P>|t] [95% Conf.
.0376833 9.142 0.000 .2705041
.4495754 21.145 0.000 8.623458

When SM is omitted,

The correlation between ASVABC and SM is positive (0.38).

E(by)= B, + B;

Cov(ASVABC,SM)

Var(ASVABC)

(7.10)

Therefore the covariance term is

positive. Since variances are always positive (unless equal to 0), the only other relevant factor for

determining the sign of the bias is 3;. It is reasonable to assume that this is positive, and the fact that

its estimate in the first regression is indeed positive and highly significant provides overwhelming

corroborative evidence.

One would therefore anticipate that the coefficient of ASVABC will be

upwards biased when SM is omitted, and you can see that it is indeed higher. Not all of the difference
should be attributed to bias. Part of it may be attributable to the effects of the disturbance term, which

could go either way.
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Similarly, when ASVABC is omitted,

C ASVABC,SM
E(b;)=B; + B, OV(Var(SM) ) (7.11)

Since f3, is also likely to be positive, the coefficient of SM in the third regression should be upwards
biased. The estimate in the third regression is indeed higher than that in the first.

In this example, the omission of one explanatory variable causes the coefficient of the other to be
overestimated. However, the bias could just as easily be negative. The sign of the bias depends on the
sign of the true coefficient of the omitted variable and on the sign of the sample covariance between
the included and omitted variables, and these will depend on the nature of the model being
investigated.

It should be emphasized that the analysis above applies only to the case where the true model is a
multiple regression model with two explanatory variables. When there are more explanatory
variables, it may be difficult to predict the impact of omitted variable bias mathematically.
Nevertheless it may be possible to conclude that the estimates of the coefficients of some of the
variables may have been inflated or deflated by the bias.

R? in the Presence of Omitted Variable Bias

In Section 4.5 it was asserted that in general it is impossible to determine the contribution to R” of each
explanatory variable in multiple regression analysis, and we are now in a position to see why.

We will discuss the issue first with reference to the educational attainment model above. In the
regression of S on ASVABC alone, R* was 0.33. In the regression on SM alone, it was 0.13. Does this
mean that ASVABC explains 33 percent of the variance in S, and SM 13 percent? No, because this
would imply that together they would explain 46 percent of the variance, and this conflicts with the
finding in the multiple regression that their joint explanatory power is 0.36.

The explanation is that in the simple regression of S on ASVABC, ASVABC is acting partly as a
variable in its own right and partly as a proxy for the missing SM, as in Figure 7.1. R* for that
regression therefore reflects the combined explanatory power of ASVABC in both of these roles, and
not just its direct explanatory power. Hence 0.33 overestimates the latter.

Similarly, in the simple regression of S on SM, SM is acting partly as a proxy for the missing
ASVABC, and the level of R” in that regression reflects the combined explanatory power of SM in both
those roles, and not just its direct explanatory power.

In this example, the explanatory power of the two variables overlapped, with the consequence
that R* in the multiple regression was less than the sum of R in the individual simple regressions.
However it is also possible for R” in the multiple regression to be greater than the sum of R in the
individual simple regressions, as is shown in the accompanying regression output for an earnings
function model. It is assumed that the true model is

LGEARN = B, + B.S + BsMALE + u, (7.12)

where MALE is a dummy variable equal to 1 for males and O for females. The first part of the
regression output shows the result of fitting (7.12), and the second and third parts show the results of
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omitting, first MALE, and then S. R? in the multiple regression is 0.188, while it is 0.141 and 0.038 in
the simple regressions, the sum being 0.179. As in the previous example, it can be assumed that both
B and B; are positive. However S and MALE are negatively correlated, so in this case the coefficients
of S and MALE in the second and third regressions may be expected to be biased downwards. As a
consequence, the apparent explanatory power of S and MALE in the simple regressions is
underestimated.

reg LGEARN S MALE

Source | SS af MS Number of obs = 570
————————— o F( 2, 567) = 65.74
Model |  28.951332 2 14.475666 Prob > F = 0.0000
Residual | 124.850561 567 .220194992 R-squared = 0.1882
————————— e Adj R-squared = 0.1854
Total | 153.801893 569 .270302096 Root MSE = .46925
LGEARN | Coef std. Err t P>|t] [95% Conf. Intervall
_________ oo ool ____
S | .0818944 .0079976 10.240 0.000 .0661858 .097603
MALE | .2285156 .0397695 5.746 0.000 .1504021 .3066291
cons | 1.19254 .1134845 10.508 0.000 .9696386 1.415441
reg LGEARN S
Source | Ss at MS Number of obs = 570
————————— R F( 1, 568) = 93.21
Model | 21.681253 1 21.681253 Prob > F = 0.0000
Residual | 132.12064 568 .23260676 R-squared = 0.1410
————————— e Adj R-squared = 0.1395
Total | 153.801893 569 .270302096 Root MSE = .48229
LGEARN | Coef std. Err t P>|t] [95% Conf. Intervall
_________ oo o o e e
S | .0792256 .0082061 9.655 0.000 .0631077 .0953435
_cons | 1.358919 .1127785 12.049 0.000 1.137406 1.580433
reg LGEARN MALE
Source | SS af MS Number of obs = 570
————————— m e m e e F( 1, 568) = 22.51
Model | 5.86288165 1 5.86288165 Prob > F = 0.0000
Residual | 147.939011 568 .260456005 R-squared = 0.0381
————————— e Adj R-squared = 0.0364
Total | 153.801893 569 .270302096 Root MSE = .51035
LGEARN | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ oo o o e e
MALE | .2048652 .0431797 4.744 0.000 .1200538 .2896767
_cons | 2.313324 .032605 70.950 0.000 2.249282 2.377365
Exercises

7.1 Using your EAEF data set, regress LGEARN (1) on S and ASVABC, (2) on S only, and (3) on
ASVABC only. Calculate the correlation between S and ASVABC. Compare the coefficients of
S in regressions (1) and (2). Give both mathematical and intuitive explanations of the direction
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7.2*

7.3

7.4

of the change. Also compare the coefficients of ASVABC in regressions (1) and (3) and explain
the direction of the change.

The table gives the results of multiple and simple regressions of LGFDHO, the logarithm of
annual household expenditure on food eaten at home, on LGEXP, the logarithm of total annual
household expenditure, and LGSIZE, the logarithm of the number of persons in the household,
using a sample of 868 households in the 1995 Consumer Expenditure Survey. The correlation
coefficient for LGEXP and LGSIZE was 0.45. Explain the variations in the regression
coefficients.

(1) 2 3)

LGEXP 0.29 0.48 -
(0.02) (0.02)

LGSIZE 0.49 - 0.63
(0.03) (0.02)

constant 4.72 3.17 7.50
0.22) (0.24) (0.02)

R? 0.52 0.31 0.42

Suppose that Y is determined by X, and X3 according to the relationship
Y=0+BXo + B:Xs+u,

and that Cov(X,, X3) is 0. Use this to simplify the multiple regression coefficient b, given by

_ Cov(X,,Y)Var(X;)—Cov(X;,Y)Cov(X,, X3)

b
2 Var(X,)Var(X5) —[Cov(X,, X ;)]

and show that it reduces to the simple regression expression. What are the implications for the
specification of the regression equation?

In a Monte Carlo experiment, a variable Y was generated as a linear function of two variables X,
and X;:
Y=10.0 + 10.0X, + 0.5X5 + u

where X, was the sequence of integers 1, 2, ..., 30, X3 was generated from X, by adding random
numbers, and u was a normally-distributed disturbance term with mean 0 and standard deviation
100. The correlation between X, and X5 was 0.95. The sample variance of X, was 74.92 and
that of X3 was 82.67. The sample covariance between X, and X3 was 74.94. The table shows the
result of fitting the following regressions for 10 samples:

Model A Y=b +b,X, +bX,
Model B Y=b +b,X,

Comment on all aspects of the regression results, giving full explanations of what you observe.
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Model A Model B
Sample b, s.e.(by) by s.e.( b) R? b, s.e.(by) R?
1 10.68 6.05 0.60 5.76 0.5800 11.28 1.82 0.5799
2 7.52 7.11 3.74 6.77 0.5018 11.26 2.14 0.4961
3 7.26 6.58 2.93 6.26 0.4907 10.20 1.98 0.4865
4 11.47 8.60 0.23 8.18 0.4239 11.70 2.58 0.4239
5 13.07 6.07 -3.04 5.78 0.5232 10.03 1.83 0.5183
6 16.74 6.63 -4.01 6.32 0.5966 12.73 2.00 0.5906
7 15.70 7.50 —4.80 7.14 0.4614 10.90 2.27 0.4523
8 8.01 8.10 1.50 7.71 0.3542 9.51 243 0.3533
9 1.08 6.78 9.52 6.45 0.5133 10.61 2.11 0.4740
10 13.09 7.58 -0.87 7.21 0.5084 12.22 2.27 0.5081
7.3 The Effect of Including a Variable that Ought not to be Included
Suppose that the true model is
Y= ﬁ1+ﬁ2X2+ u (7.13)
and you think it is
Y=0+BXo+ Xz + u, (7.14)

and you estimate b, using (7.4) instead of Cov(X,, Y)/Var(X5).

In general there is no problem of bias, even though b, has been calculated incorrectly. E(b,) will
still be equal to f3,, but in general b, will be an inefficient estimator. It will be more erratic, in the
sense of having a larger variance about [, than if it had been calculated correctly. This is illustrated

in Figure 7.2.

probability density
function

B2 estimated using Cov(Xz, Y)/Var(Xz)
(exploits information s = 0)

/

P2 estimated using (7.4) (does

Figure 7.2.

not exploit information Bz = 0)
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TABLE 7.2
Simple Regression Multiple Regression
R o] ) ol 1
sz BTN sz T — 2
nVar(X,) nVar(X,) I=ry x,

This is easy to explain intuitively. The true model may be rewritten
Y= ﬁl +ﬁ2X2+OX3+ u (715)

So if you regress Y on X, and X3, b, will be an unbiased estimator of 3, and b; will be an unbiased
estimator of 0, provided that the Gauss—Markov conditions are satisfied. Effectively, you are
discovering for yourself that f; is 0. If you realized beforehand that f3; is 0, you would be able to
exploit this information to exclude X; and use simple regression, which in this context is more
efficient.

The loss of efficiency caused by including X3 when it ought not to be included depends on the
correlation between X, and X5;. Compare the expressions for the variances of b, using simple and
multiple regression in Table 7.2. The variance will in general be larger in the case of multiple
regression, and the difference will be the greater the closer the correlation coefficient is to plus or
minus 1. The one exception to the loss of efficiency occurs when the correlation coefficient happens
to be exactly equal to 0. In that case the estimator b, for multiple regression will be identical to that
for simple regression. The proof of this will be left as an easy exercise.

There is one exception to the unbiasedness conclusion that ought to be kept in mind. If Xj; is
correlated with u, the regression coefficients will be biased after all. Writing the model as (7.15), this
amounts to the fourth Gauss—Markov condition not being satisfied with respect to X;.

Example

The regression output shows the results of regressions of LGFDHO, the logarithm of annual
household expenditure on food eaten at home, on LGEXP, the logarithm of total annual household
expenditure, and LGSIZE, the logarithm of the number of persons in the household, using a sample of
868 households in the 1995 Consumer Expenditure Survey. In the second regression, LGHOUS, the
logarithm of annual expenditure on housing services, has been added. It is safe to assume that
LGHOUS is an irrelevant variable and, not surprisingly, its coefficient is not significantly different
from 0. It is however highly correlated with LGEXP (correlation coefficient 0.81), and also, to a lesser
extent, with LGSIZE (correlation coefficient 0.33). Its inclusion does not cause the coefficients of
those variables to be biased but it does increase their standard errors, particularly that of LGEXP, as
you would expect, given the loss of efficiency.
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reg LGFDHO LGEXP LGSIZE

Source | Ss at MS Number of obs = 868
————————— R e e TR F( 2, 865) = 460.92
Model | 138.776549 2 69.3882747 Prob > F = 0.0000
Residual | 130.219231 865 .150542464 R-squared = 0.5159
————————— e Adj R-squared = 0.5148
Total | 268.995781 867 .310260416 Root MSE = .388
LGFDHO | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o
LGEXP | .2866813 .0226824 12.639  0.000 .2421622 .3312003
LGSIZE | .4854698 .0255476 19.003  0.000 .4353272 .5356124
_cons | 4.720269 .2209996 21.359  0.000 4.286511 5.154027
reg LGFDHO LGEXP LGSIZE LGHOUS
Source | Ss at MS Number of obs = 868
————————— R e e TR F( 3, 864) = 307.22
Model | 138.841976 3 46.2806586 Prob > F = 0.0000
Residual | 130.153805 864 .150640978 R-squared = 0.5161
————————— e Adj R-squared = 0.5145
Total | 268.995781 867 .310260416 Root MSE = .38812
LGFDHO | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ el
LGEXP | .2673552 .0370782 7.211  0.000 .1945813 .340129
LGSIZE | .4868228 .0256383 18.988  0.000 .4365021 .5371434
LGHOUS | .0229611 .0348408 0.659  0.510 -.0454214 .0913436
_cons | 4.708772 .2217592 21.234  0.000 4.273522 5.144022
Exercises

7.5* A social scientist thinks that the level of activity in the shadow economy, Y, depends either
positively on the level of the tax burden, X, or negatively on the level of government
expenditure to discourage shadow economy activity, Z. Y might also depend on both X and Z.
International cross-section data on Y, X, and Z, all measured in U.S. $ million, are obtained for a
sample of 30 industrialized countries and a second sample of 30 developing countries. The
social scientist regresses (1) log Y on both log X and log Z, (2) log Y on log X alone, and (3)
logY on logZ alone, for each sample, with the following results (standard errors in

parentheses):
Industrialized Countries Developing Countries
1 ) 3) 1 ) 3)
log X 0.699 0.201 - 0.806 0.727 -
(0.154) (0.112) (0.137) (0.090)
log Z -0.646 3 —-0.053 -0.091 3 0.427
(0.162) (0.124) (0.117) (0.116)
constant -1.137 -1.065 1.230 -1.122 -1.024 2.824

(0.863) (1.069) (0.896) (0.873)  (0.858)  (0.835)
R? 0.44 0.10 0.01 0.71 0.70 0.33
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X was positively correlated with Z in both samples. Having carried out the appropriate
statistical tests, write a short report advising the social scientist how to interpret these results.

7.6 Regress LGEARN on S, ASVABC, MALE, ETHHISP and ETHBLACK using your EAEF data set.
Repeat the regression, adding SIBLINGS. Calculate the correlations between SIBLINGS and the
other explanatory variables. Compare the results of the two regressions.

7.4 Proxy Variables

It frequently happens that you are unable to obtain data on a variable that you would like to include in
a regression equation. Some variables, such as socioeconomic status and quality of education, are so
vaguely defined that it may be impossible even in principle to measure them. Others might be
measurable, but require so much time and energy that in practice they have to be abandoned.
Sometimes you are frustrated because you are using survey data collected by someone else, and an
important variable (from your point of view) has been omitted.

Whatever the reason, it is usually a good idea to use a proxy for the missing variable, rather than
leave it out entirely. For socioeconomic status, you might use income as a substitute, if data on it are
available. For quality of education, you might use the staff-student ratio or expenditure per student.
For a variable omitted in a survey, you will have to look at the data actually collected to see if there is
a suitable substitute.

There are two good reasons for trying to find a proxy. First, if you simply leave the variable out,
your regression is likely to suffer from omitted variable bias of the type described in Section 7.2, and
the statistical tests will be invalidated. Second, the results from your proxy regression may indirectly
shed light on the influence of the missing variable.

Suppose that the true model is

Y=B1+BXo+ BXs+ ...+ BXi+u (7.16)

Suppose that we have no data for X,, but another variable Z is an ideal proxy for it in the sense that
there exists an exact linear relationship between X, and Z:

Xo=A+uZ (7.17)

A and u being fixed, but unknown, constants. (Note that if A and u were known, we could calculate X,
from Z, and so there would be no need to use Z as a proxy. Note further that we cannot estimate A and
U by regression analysis, because to do that we need data on X5.)

Substituting for X, from (7.17) into (7.16), the model may be rewritten

Y=B1+BA+UZ)+ B:X5+ ...+ BXi+u

:[31+ﬁzl+ﬁ2,uZ+ﬁ3X3+...+ﬁka+u (7.18)
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The model is now formally correctly specified in terms of observable variables, and if we fit it, the
following results will obtain:

1. The coefficients of Xj, ..., X}, their standard errors, and their ¢ statistics will be the same as if
X5 had been used instead of Z.

2. R? will be the same as if X, had been used instead of Z.

3. The coefficient of Z will be an estimate of Bu and so it will not be possible to obtain an
estimate of [3,, unless you are able to guess the value of L.

4. However, the ¢ statistic for Z will be the same as that which would have been obtained for X,,
and so you are able to assess the significance of X,, even though you are not able to estimate
its coefficient.

5. Tt will not be possible to obtain an estimate of f3;, since the intercept is now (f; + fA), but
usually the intercept is of secondary interest, anyway.

With regard to the third point, suppose that you are investigating migration from country A to
country B and you are using the (very naive) model

M=B+BW+u (7.19)

where M is the rate of migration of a certain type of worker from A to B, and W is the ratio of the
wage rate in B to the wage rate in A. The higher the relative wage rate, you think the higher is
migration. But suppose that you only have data on GDP per capita, not wages. You might define a
proxy variable G that is the ratio of GDP in B to GDP in A.

In this case it might be reasonable to assume, as a first approximation, that relative wages are
proportional to relative GDP. If that were true, one could write (7.17) with A equal to 0 and u equal to
1. In this case the coefficient of relative GDP would yield a direct estimate of the coefficient of
relative wages. Since variables in regression analysis are frequently defined in relative terms, this
special case actually has quite a wide application.

In this discussion we have assumed that Z is an ideal proxy for X,, and the validity of all the
foregoing results depends on this condition. In practice it is unusual to find a proxy that is exactly
linearly related to the missing variable, but if the relationship is close the results will hold
approximately. A major problem is posed by the fact that there is never any means of testing whether
the condition is or is not approximated satisfactorily. One has to justify the use of the proxy
subjectively.

Example

The main determinants of educational attainment appear to be the cognitive ability of an individual
and the support and motivation provided by the family background. The NLSY data set is exceptional
in that cognitive ability measures are available for virtually all the respondents, the data being obtained
when the Department of Defense, needing to re-norm the Armed Services Vocational Aptitude Battery
scores, sponsored the administration of the tests. However, there are no data that bear directly on
support and motivation provided by the family background. This factor is difficult to define and
probably has several dimensions. Accordingly, it is unlikely that a single proxy could do justice to it.
The NLSY data set includes data on parental educational attainment and the number of siblings of the
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respondent, both of which could be used as proxies, the rationale for the latter being that parents who
are ambitious for their children tend to limit the family size in order to concentrate resources. The
data set also contains three dummy variables specifically intended to capture family background
effects: whether anyone in the family possessed a library card, whether anyone in the family bought
magazines, and whether anyone in the family bought newspapers, when the respondent was aged 14.
However the explanatory power of these variables appears to be very limited.

The regression output shows the results of regressing S on ASVABC only and on ASVABC,
parental education, number of siblings, and the library card dummy variable. ASVABC is positively
correlated with SM, SF, and LIBRARY (correlation coefficients 0.38, 0.42 and 0.22, respectively), and
negatively correlated with SIBLINGS (correlation coefficient —0.19). Its coefficient is therefore
unambiguously biased upwards in the first regression. However, there may still be an element of bias
in the second, given the weakness of the proxy variables.

reg S ASVABC

Source | Ss at MS Number of obs = 570
————————— i mmm e e e F( 1, 568) = 284.89
Model | 1153.80864 1 1153.80864 Prob > F = 0.0000
Residual | 2300.43873 568 4.05006818 R-squared = 0.3340
————————— e Adj R-squared = 0.3329
Total | 3454.24737 569 6.07073351 Root MSE = 2.0125
S | Coef Std. Err t P>|t] [95% Conf. Intervall
_________ N
ASVABC | .1545378 .0091559 16.879 0.000 .1365543 .1725213
_cons | 5.770845 .4668473 12.361 0.000 4.853888 6.687803
reg S ASVABC SM SF LIBRARY SIBLINGS
Source | SS daf MS Number of obs = 570
————————— e F( 5, 564) = 66.87
Model | 1285.58208 5 257.116416 Prob > F = 0.0000
Residual | 2168.66529 564 3.84515122 R-squared = 0.3722
————————— b e Adj R-squared = 0.3666
Total | 3454.24737 569 6.07073351 Root MSE = 1.9609
S | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ o o o oo ____
ASVABC | .1277852 .010054 12.710 0.000 .1080373 .147533
SM | .0619975 .0427558 1.450 0.148 -.0219826 .1459775
SF | .1045035 .0314928 3.318 0.001 .042646 .166361
LIBRARY | .1151269 .1969844 0.584 0.559 -.2717856 .5020394
SIBLINGS | -.0509486 .039956 -1.275 0.203 -.1294293 .027532
_cons | 5.236995 .5665539 9.244 0.000 4.124181 6.349808

Unintentional Proxies

It sometimes happens that you use a proxy without realizing it. You think that Y depends upon Z, but
in reality it depends upon X.

If the correlation between Z and X is low, the results will be poor, so you may realize that
something is wrong, but, if the correlation is good, the results may appear to be satisfactory (R* up to
the anticipated level, etc.) and you may remain blissfully unaware that the relationship is false.
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Does this matter? Well, it depends on why you are running the regression in the first place. If the
purpose of fitting the regression line is to predict future values of Y, the use of a proxy will not matter
much, provided of course that the correlation remains high and was not a statistical fluke in the sample
period. However, if your intention is to use the explanatory variable as a policy instrument for
influencing the dependent variable, the consequences could be serious. Unless there happens to be a
functional connection between the proxy and the true explanatory variable, manipulating the proxy
will have no effect at all on the dependent variable. If the motive for your regression is scientific
curiosity, the outcome is equally unsatisfactory.

Unintentional proxies are especially common in time series analysis, particularly in
macroeconomic models. If the true explanatory variable is subject to a time trend, you will probably
get a good fit if you substitute (intentionally or otherwise) any other variable with a time trend. Even
if you relate changes in your dependent variable to changes in your explanatory variable, you are
likely to get similar results whether you are using the correct explanatory variable or a proxy, since
macroeconomic variables tend to change in concert over the trade cycle.

Exercise

7.7  Length of work experience is generally found to be an important determinant of earnings. The
data set does not contain this variable, but TENURE, tenure with the current employer, could be
taken as a proxy. An alternative is to calculate years of potential work experience, PWE, as a
proxy. This is defined to be current age, AGE, less age of completion of full-time education.
The latter can be estimated as years of schooling plus 5, assuming that schooling begins at the
age of 6. Hence

PWE =AGE - S -5.

Using your EAEF data set, regress LGEARN on S, ASVABC, MALE, ETHBLACK, ETHHISP,
and PWE. Compare the results with the corresponding regression without PWE. You are likely
to find that the coefficient of S is greater than before. Can you explain why?

The data set includes TENURE, tenure with current employer. This allows one to divide
PWE into two components: potential work experience with previous employers, PWEBEF, and
TENURE. Define PWEBEF as

PWEBEF = PWE — TENURE

and regress LGEARN on the variables as before, replacing PWE by PWEBEF and TENURE.
Compare the result with that of the previous regression.

Variation: PWE is not likely to be a satisfactory proxy for work experience for females because
it does not take into account time spent out of the labor force rearing children. Investigate this
by running the regressions with PWE for the male and female subsamples separately. You must
drop the MALE dummy from the specification (explain why). Do the same for the regressions
with PWEBEF and TENURE.

7.8 A researcher has data on output per worker, Y, and capital per worker, K, both measured in
thousands of dollars, for 50 firms in the textiles industry in 2001. She hypothesizes that output
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per worker depends on capital per worker and perhaps also the technological sophistication of
the firm, TECH:

Y =B+ K+ BTECH + u

where u is a disturbance term. She is unable to measure TECH and decides to use expenditure
per worker on research and development in 2001, R&D, as a proxy for it. She fits the following
regressions (standard errors in parentheses):

Y =1.02 + 032K R*=0.749
(0.45) (0.04)

Y =034 + 029K + 0.05R&D R*=0.750
(0.61) (0.22) (0.15)

The correlation coefficient for K and R&D was 0.92. Discuss these regression results
(1) assuming that ¥ does depend on both K and TECH,
(2) assuming that ¥ depends only on K.

7.5 Testing a Linear Restriction

In Section 4.4 it was demonstrated that you can reduce the number of explanatory variables in a
regression equation by one if you believe that there exists a linear relationship between the parameters
in it. By exploiting the information about the relationship, you will make the regression estimates
more efficient. If there was previously a problem of multicollinearity, it may be alleviated. Even if
the original model was not subject to this problem, the gain in efficiency may yield a welcome
improvement in the precision of the estimates, as reflected by their standard errors.

The example discussed in Section 4.4 was an educational attainment model with S related to
ASVABC, SM, and SF:

. reg S ASVABC SM SF

Source | SS af MS Number of obs = 570
————————— R F( 3, 566) = 110.83
Model | 1278.24153 3 426.080508 Prob > F = 0.0000
Residual | 2176.00584 566 3.84453329 R-squared = 0.3700
————————— e Adj R-squared = 0.3667
Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

S | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
ASVABC | .1295006 .0099544 13.009 0.000 .1099486 .1490527
SM | .069403 .0422974 1.641 0.101 -.013676 .152482

SF | .1102684 .0311948 3.535 0.000 .0489967 .1715401

cons | 4.914654 .5063527 9.706 0.000 3.920094 5.909214
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Somewhat surprisingly, the coefficient of SM is not significant, even at the 5 percent level, using
a one-tailed test. However assortive mating leads to a high correlation between SM and SF and the
regression appeared to be suffering from multicollinearity.

We then hypothesized that mother's and father's education are equally important for educational
attainment, allowing us to impose the restriction 8; = 8, and rewrite the equation as

S =P, + B,ASVSABC + 3,(SM + SF) +u

(7.20)
=3, + B,ASVSABC + 3,SP +u
where SP is the sum of SM and SF.
. g SP=SM+SF
. reg S ASVABC SP
Source | SS af MS Number of obs = 570
--------- e F( 2, 567) = 166.22
Model | 1276.73764 2 638.368819 Prob > F = 0.0000
Residual | 2177.50973 567 3.84040517 R-squared = 0.3696
————————— e Adj R-squared = 0.3674
Total | 3454.24737 569 6.07073351 Root MSE = 1.9597
S | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ o
ASVABC | .1295653  .0099485 13.024  0.000 .1100249 .1491057
SP | .093741  .0165688 5.658  0.000 .0611973 .1262847
cons |  4.823123  .4844829 9.955  0.000 3.871523 5.774724

The standard error of SP is much smaller than those of SM and SF, indicating that the use of the
restriction has led to a gain in efficiency, and as a consequence the  statistic is very high. Thus the
problem of multicollinearity has been eliminated. However, we are obliged to test the validity of the
restriction, and there are two equivalent procedures.

F Test of a Restriction

Run the regression in both the restricted and the unrestricted forms and denote the sum of the squares
of the residuals RSSk in the restricted case and RSSy in the unrestricted case. Since the imposition of
the restriction makes it more difficult to fit the regression equation to the data, RSSz cannot be less
than RSSy and will in general be greater. We would like to test whether the improvement in the fit on
going from the restricted to the unrestricted version is significant. If it is, the restriction should be
rejected.

For this purpose we can use an F test whose structure is the same as that described in Section 4.5:

Improvement in fit/Extra degrees of freedom used up 721)

Residual sum of squares remaining /Degrees of freedom remaining

In this case the improvement on going from the restricted to the unrestricted version is (RSSz — RSSy),
one extra degree of freedom is used up in the unrestricted version (because there is one more
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parameter to estimate), and the residual sum of squares remaining after the shift from the restricted to
the unrestricted version is RSS;. Hence the F statistic is in this case

RSS, —RSS,,

F(,n—k)= ,
RSS,, [(n—k)

(7.22)

where k is the number of parameters in the unrestricted version. It is distributed with 1 and n — &
degrees of freedom under the null hypothesis that the restriction is valid.

In the case of the educational attainment function, the null hypothesis was Hy: 35 = B4, where f3; is
the coefficient of SM and B, is the coefficient of SF. The residual sum of squares was 2177.51 in the
restricted version and 2176.01 in the unrestricted version. Hence the F statistic is

2177.51-2176.01 _
2176.01/566

F(ln-k)= 0.39 (7.23)

Since the F statistic is less than 1, it is not significant at any significance level and we do not reject the
null hypothesis that the coefficients of SM and SF are equal.

t Test of a Restriction

Linear restrictions can also be tested using a ¢ test. This involves writing down the model for the
restricted version and adding the term that would convert it back to the unrestricted version. The test
evaluates whether this additional term is needed. To find the conversion term, we write the restricted
version of the model under the unrestricted version and subtract:

S =B, + B,ASVABC + B,SM + B,SF +u (7.24)

S =B, + B,ASVABC + B,SP+u (7.25)

0= B,SM + B,SF — B,SP
= B:SM + B,SF — B,(SM + SF) (7.26)
= (ﬂ4 - ﬂ3)SF

We add this term to the restricted model and investigate whether it is needed.
S =B, + B,ASVABC + B,SP+ (B4 — B;)SP+u (7.27)

The null hypothesis, Hy: By — 5 = 0, is that the coefficient of the conversion term is 0, and the
alternative hypothesis is that it is different from 0. Of course the null hypothesis is that the restriction
is valid. If it is valid, the conversion term is not needed, and the restricted version is an adequate
representation of the data.

Here is the corresponding regression for the educational attainment example. We see that the
coefficient of SF is not significantly different from 0, indicating that the term is not needed and that
the restricted version is an adequate representation of the data.
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. reg S ASVABC SP SF

Source | SS af MS Number of obs = 570
————————— i m e e F( 3, 566) = 110.83
Model | 1278.24153 3 426.080508 Prob > F = 0.0000
Residual | 2176.00584 566 3.84453329 R-squared = 0.3700
————————— b e Adj R-squared = 0.3667
Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

S | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo ool ____
ASVABC | .1295006 .0099544 13.009 0.000 .1099486 .1490527
SP | .069403 .0422974 1.641 0.101 -.013676 .152482

SF | .0408654 .0653386 0.625 0.532 -.0874704 .1692012

cons | 4.914654 .5063527 9.706 0.000 3.920094 5.909214

Why is the 7 test approach equivalent to that of the F test? Well the F test tests the improvement in fit

when you go from the restricted version to the unrestricted version. This is accomplished by adding
the conversion term, but, as we know, an F test on the improvement in fit when you add an extra term

is equivalent to the ¢ test on the coefficient of that term (see Section 4.5).

Exercises

7.9

7.10*

You will have found in Exercise 7.7 that the estimates of the coefficients of PWEBEF and
TENURE are different. This raises the issue of whether the difference is due to random factors
or whether the coefficients are significantly different. Set up the null hypothesis Hy: &, = O,
where ¢, is the coefficient of PWEBEF and 6, is the coefficient of TENURE. Explain why the
regression with PWE is the correct specification if H, is true, while the regression with
PWEBEF and TENURE should be used if H, is false. Perform an F test of the restriction using
RSS for the two regressions. Do this for the combined sample and also for males and females
separately.

The first regression shows the result of regressing LGFDHO, the logarithm of annual household
expenditure on food eaten at home, on LGEXP, the logarithm of total annual household
expenditure, and LGSIZE, the logarithm of the number of persons in the household, using a
sample of 868 households in the 1995 Consumer Expenditure Survey. In the second regression,
LGFDHOPC, the logarithm of food expenditure per capita (FDHO/SIZE), is regressed on
LGEXPPC, the logarithm of total expenditure per capita (EXP/SIZE). In the third regression
LGFDHOPC is regressed on LGEXPPC and LGSIZE.
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reg LGFDHO LGEXP LGSIZE

Source | SS af MS Number of obs = 868
————————— e F( 2, 865) = 460.92
Model | 138.776549 2 69.3882747 Prob > F = 0.0000
Residual | 130.219231 865 .150542464 R-squared = 0.5159
————————— b e Adj R-squared = 0.5148
Total | 268.995781 867 .310260416 Root MSE = .388
LGFDHO | Coef std. Err t P>|t] [95% Conf. Intervall
_________ oo oo el ____
LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003
LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

reg LGFDHOPC LGEXPPC

Source | Ss at MS Number of obs = 868
————————— e F( 1, 866) = 313.04
Model | 51.4364364 1 ©51.4364364 Prob > F = 0.0000
Residual | 142.293973 866 .164311747 R-squared = 0.2655
————————— e Adj R-squared = 0.2647
Total | 193.73041 867 .223449146 Root MSE = .40535
LGFDHOPC | Coef Std. Err. t P>|t] [95% Conf. Intervall
_________ oo oo el ____
LGEXPPC | .376283 .0212674 17.693 0.000 .3345414 .4180246
_cons | 3.700667 .1978925 18.700 0.000 3.312262 4.089072
reg LGFDHOPC LGEXPPC LGSIZE
Source | SS af MS Number of obs = 868
————————— e F( 2, 865) = 210.94
Model | 63.5111811 2 31.7555905 Prob > F = 0.0000
Residual | 130.219229 865 .150542461 R-squared = 0.3278
————————— e Adj R-squared = 0.3263
Total | 193.73041 867 .223449146 Root MSE = .388
LGFDHOPC | Coef. Std. Err. t P>|t] [95% Conf. Intervall
_________ oo o o e
LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004
LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

1. Explain why the second model is a restricted version of the first, stating the restriction.
2. Perform an F test of the restriction.

3. Perform a ¢ test of the restriction.

4.  Summarize your conclusions from the analysis of the regression results.

7.11 In his classic article (Nerlove, 1963), Nerlove derives the following cost function for electricity
generation:

C= ﬁlYﬁ2PIYI P27’2P373v’
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where C is total production cost, Y is output (measured in kilowatt hours), P, is the price of
labor input, P, is the price of capital input, P; is the price of fuel (all measured in appropriate
units), and v is a disturbance term. Theoretically, the sum of the price elasticities should be 1:

Nitrnt+tp=1

and hence the cost function may be rewritten

71 V2
P P.
£ = ﬁ]Y’BZ _1 _2 Vv
Py P\ B
The two versions of the cost function are fitted to the 29 medium-sized firms in Nerlove's
sample, with the following results (standard errors in parentheses):

logC =-493+ 0941logY+0.31log P,— 0.26log P, + 0.44 log P RSS =0.336

(1.62) (0.11) (0.23) (0.29) (0.07)
¢ P P,
log— =-6.55+ 091logY+0.51 log? +0.09 log? RSS =0.364
3 3 3
(0.16) (0.11) (0.23) (0.19)

Compare the regression results for the two equations and perform a test of the validity of the
restriction.

7.6 Getting the Most Out of Your Residuals

There are two ways of looking at the residuals obtained after fitting a regression equation to a set of
data. If you are pessimistic and passive, you will simply see them as evidence of failure. The bigger
the residuals, the worse is your fit, and the smaller is R°. The whole object of the exercise is to fit the
regression equation in such a way as to minimize the sum of the squares of the residuals. However, if
you are enterprising, you will also see the residuals as a potentially fertile source of new ideas, perhaps
even new hypotheses. They offer both a challenge and constructive criticism. The challenge is that
providing the stimulus for most scientific research: evidence of the need to find a better explanation of
the facts. The constructive criticism comes in because the residuals, taken individually, indicate when
and where and by how much the existing model is failing to fit the facts.

Taking advantage of this constructive criticism requires patience on the part of the researcher. If
the sample is small enough, you should look carefully at every observation with a large positive or
negative residual, and try to hypothesize explanations for them. Some of these explanations may
involve special factors specific to the observations in question. These are not of much use to the
theorist. Other factors, however, may appear to be associated with the residuals in several
observations. As soon as you detect a regularity of this kind, you have the makings of progress. The
next step is to find a sensible way of quantifying the factor and of including it in the model.



HETEROSCEDASTICITY

Medicine is traditionally divided into the three branches of anatomy, physiology, and pathology — what a
body is made of, how it works, and what can go wrong with it. It is time to start discussing the
pathology of least squares regression analysis. The properties of the estimators of the regression
coefficients depend on the properties of the disturbance term in the regression model. In this and the
next two chapters we shall be looking at some of the problems that arise when violations of the Gauss—
Markov conditions, the assumptions relating to the disturbance term, are not satisfied.

8.1 Heteroscedasticity and Its Implications

The second of the Gauss—Markov conditions listed in Section 3.3 states that the variance of the
disturbance term in each observation should be constant. This sounds peculiar and needs a bit of
explanation. The disturbance term in each observation has only one value, so what can be meant by its
"variance"?

What we are talking about is its potential behavior before the sample is generated. When we
write the model

Y= ﬁ1+ﬁ2X+ u, (81)

Xi Xz X3 X4 Xs X

Figure 8.1 Homoscedasticity
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the first two Gauss—Markov conditions state that the disturbance terms u;, ..., u, in the n observations
are drawn from probability distributions that have 0 mean and the same variance. Their actual values
in the sample will sometimes be positive, sometimes negative, sometimes relatively far from 0,
sometimes relatively close, but there will be no a priori reason to anticipate a particularly erratic value
in any given observation. To put it another way, the probability of u reaching a given positive (or
negative) value will be the same in all observations. This condition is known as homoscedasticity,
which means "same dispersion".

Figure 8.1 provides an illustration of homoscedasticity. To keep the diagram simple, the sample
contains only five observations. Let us start with the first observation, where X has the value X;. If
there were no disturbance term in the model, the observation would be represented by the circle
vertically above X; on the line Y = fB; + X. The effect of the disturbance term is to shift the
observation upwards or downwards vertically. The potential distribution of the disturbance term,
before the observation has been generated, is shown by the normal distribution centered on the circle.
The actual value of the disturbance term for this observation turned out to be negative, the observation
being represented by the solid marker. The potential distribution of the disturbance term, and the
actual outcome, are shown in a similar way for the other four observations.

Although homoscedasticity is often taken for granted in regression analysis, in some contexts it
may be more reasonable to suppose that the potential distribution of the disturbance term is different
for different observations in the sample. This is illustrated in Figure 8.2, where the variance of the
potential distribution of the disturbance term is increasing as X increases. This does not mean that the
disturbance term will necessarily have a particularly large (positive or negative) value in an
observation where X is large, but it does mean that the a priori probability of having an erratic value
will be relatively high. This is an example of heteroscedasticity, which means "differing dispersion".
Mathematically, homoscedasticity and heteroscedasticity may be defined:

Homoscedasticity: Gi = 63 , same for all observations

Heteroscedasticity: 0'5, not the same for all observations

® Y= ﬁ1 +ﬁ2X

X4 Xo X3 X4 Xs X

Figure 8.2 Heteroscedasticity
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Figure 8.3 Model with a heteroscedastic disturbance term

Figure 8.3 illustrates how a typical scatter diagram would look if ¥ were an increasing function of
X and the heteroscedasticity were of the type shown in Figure 8.2. You can see that, although the
observations are not necessarily further away from the nonstochastic component of the relationship,
represented by the line Y = 3, + B.X, there is a tendency for their dispersion to increase as X increases.
(You should be warned that heteroscedasticity is not necessarily of the type shown in Figures 8.2 and
8.3. The term refers to any case in which the variance of the probability distribution of the disturbance
term is not the same in all observations.)

Why does heteroscedasticity matter? This particular Gauss—Markov condition does not appear to
have been used anywhere in the analysis so far, so it might seem almost irrelevant. In particular, the
proofs of the unbiasedness of the OLS regression coefficients did not use this condition.

There are two reasons. The first concerns the variances of the regression coefficients. You want
these to be as small as possible so that, in a probabilistic sense, you have maximum precision. If there
is no heteroscedasticity, and if the other Gauss—Markov conditions are satisfied, the OLS regression
coefficients have the lowest variances of all the unbiased estimators that are linear functions of the
observations of Y. If heteroscedasticity is present, the OLS estimators are inefficient because you
could, at least in principle, find other estimators that have smaller variances and are still unbiased.

The second, equally important, reason is that the estimators of the standard errors of the
regression coefficients will be wrong. They are computed on the assumption that the distribution of
the disturbance term is homoscedastic. If this is not the case, they are biased, and as a consequence
the ¢ tests, and also the usual F tests, are invalid. It is quite likely that the standard errors will be
underestimated, so the ¢ statistics will be overestimated and you will have a misleading impression of
the precision of your regression coefficients. You may be led to believe that a coefficient is
significantly different from 0, at a given significance level, when in fact it is not.

The inefficiency property can be explained intuitively quite -easily. Suppose that
heteroscedasticity of the type displayed in Figures 8.2 and 8.3 is present. An observation where the
potential distribution of the disturbance term has a small standard deviation, like the first observation
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in Figure 8.2, will tend to lie close to the line Y = i + 5,X and hence will be a good guide to the
location of that line. By contrast, an observation where the potential distribution has a large standard
deviation, like that for the fifth observation in Figure 8.2, will be an unreliable guide to the location of
the line. OLS does not discriminate between the quality of the observations, giving equal weight to
each, irrespective of whether they are good or poor guides to the location of the line. It follows that if
we can find a way of giving more weight to the high-quality observations and less to the unreliable
ones, we are likely to obtain a better fit. In other words, our estimators of ; and 3, will be more
efficient. We shall see how to do this below.

Possible Causes of Heteroscedasticity

Heteroscedasticity is likely to be a problem when the values of the variables in the sample vary
substantially in different observations. If the true relationship is given by Y = fB; + B.X + u, it may well
be the case that the variations in the omitted variables and the measurement errors that are jointly
responsible for the disturbance term will be relatively small when Y and X are small and large when
they are large, economic variables tending to move in size together.

For example, suppose that you are using the simple regression model to investigate the
relationship between value added in manufacturing, MANU, and gross domestic product, GDP, in
cross-country data, and that you have collected the sample of observations given in Table 8.1, which
includes small economies such as Slovenia and Slovakia as well as large ones such as France, the UK,
and Italy. Manufacturing output tends to account for 15 to 25 percent of GDP, variations being caused
by comparative advantage and historical economic development. Clearly, when GDP is large, a 1
percent variation will make a great deal more difference, in absolute terms, than when it is small.

South Korea and Mexico are both countries with relatively large GDP. The manufacturing sector
is relatively important in South Korea, so its observation is far above the trend line. The opposite was
the case for Mexico, at least in 1997. Singapore and Greece are another pair of countries with
relatively large and small manufacturing sectors. However, because the GDP of both countries is
small, their variations from the trend relationship are also small.

300000

250000 N

200000 -
South Korea

°
150000 °

100000 + .
Singapore .

50000 - e *
o’ Mexico
o,

°
Mo

Manufacturing output (U.S. $ million)

Greece
T

J

0 M T T T T T

0 200000 400000 600000 800000 1000000 1200000 1400000
GDP (U.S. $ million)

Figure 8.4. Manufacturing output and GDP
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TaBLE 8.1

Manufacturing Value Added, GDP, and Population
for a Sample of Countries, 1994

Country MANU GDP POP MANU/POP GDP/POP
Belgium 44517 232006 10.093 4411 22987
Canada 112617 547203 29.109 3869 18798
Chile 13096 50919 13.994 936 3639
Denmark 25927 151266 5.207 4979 29050
Finland 21581 97624 5.085 4244 19199
France 256316 1330998 57.856 4430 23005
Greece 9392 98861 10.413 902 9494
Hong Kong 11758 130823 6.044 1945 21645
Hungary 7227 41506 10.162 711 4084
Ireland 17572 52662 3.536 4970 14893
Israel 11349 74121 5.362 2117 13823
Italy 145013 1016286 57.177 2536 17774
Korea, S. 161318 380820 44.501 3625 8558
Kuwait 2797 24848 1.754 1595 14167
Malaysia 18874 72505 19.695 958 3681
Mexico 55073 420788 89.564 615 4698
Netherlands 48595 334286 15.382 3159 21732
Norway 13484 122926 4314 3126 28495
Portugal 17025 87352 9.824 1733 8892
Singapore 20648 71039 3.268 6318 21738
Slovakia 2720 13746 5.325 511 2581
Slovenia 4520 14386 1.925 2348 7473
Spain 80104 483652 39.577 2024 12221
Sweden 34806 198432 8.751 3977 22675
Switzerland 57503 261388 7.104 8094 36794
Syria 3317 44753 13.840 240 3234
Turkey 31115 135961 59.903 519 2270
UK 244397 1024609 58.005 4213 17664

Source: UNIDO Yearbook 1997
Note: MANU and GDP are measured in U.S. $ million. POP is measured in million.
MANU/POP and GDP/POP are measured in U.S. $.

8.2 Detection of Heteroscedasticity

In principle there is no limit to the possible different types of heteroscedasticity and accordingly a
large number of different tests appropriate for different circumstances have been proposed. We will
confine our attention to three tests that hypothesize a relationship between the variance of the
disturbance term and the size of the explanatory variable(s): the Spearman rank correlation test, the
Goldfeld—Quandet test, and the Glejser test.
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The Spearman Rank Correlation Test

The Spearman rank correlation test assumes that the variance of the disturbance term is either
increasing or decreasing as X increases and that therefore there will be a correlation between the
absolute size of the residuals and the size of X in an OLS regression. The data on X and the absolute
values of the residuals are both ranked, and the rank correlation coefficient is defined as

6i D}
i=1

_ : (8.2)
nn”-1)

rX,e

where D; is the difference between the rank of X and the rank of ¢ in observation i.
Under the assumption that the population correlation coefficient is 0, the rank correlation
coefficient has a normal distribution with O mean and variance 1/(n — 1) in large samples. The

appropriate test statistic is therefore ry ,+/n—1 and the null hypothesis of homoscedasticity will be

rejected at the 5 percent level if its absolute value is greater than 1.96 and at the 1 percent level if its
absolute value is greater than 2.58, using two-tailed tests. If there is more than one explanatory
variable in the model, the test may be performed with any one of them.

Example

Using the data in Table 8.1, an OLS regression of manufacturing output on GDP yields the following
result (standard errors in parentheses):

MANU = 604+ 0.194GDP R*=0.89 (8.3)
(5700) (0.013)

This implies that manufacturing accounts for $194,000 out of every $1 million increase in GDP in the
cross-section. The residuals from the regression and GDP are both ranked in Table 8.2 and D, and

D} are computed. The sum of the latter came to 1608. The rank correlation coefficient is thus

|_6x1608 _
28783

0.56 (8.4)

and the test statistic is 0.564/27 = 2.91. This is above 2.58 and hence the null hypothesis of

homoscedasticity is rejected at the 1 percent level.



HETEROSCEDASTICITY 7

TABLE 8.2
GDP  Rank  lel  Rank D D’ GDP  Rank lel Rank D D’
13746 1 547 2 -l 1 130823 15 14185 23 -8 64
14386 2 1130 4 2 4 135961 16 4176 12 4 16
24848 32620 8 -5 25 151266 17 3976 11 6 36
41506 4 1417 5 -l 1 198432 18 4233 14 4 16
44753 5 5955 15 10 100 232006 19 1025 3 16 256
50919 6 2629 9 -3 9 261388 20 6270 17 3 9
52662 7 6768 19 12 144 334286 21 16758 24 -3 9
71039 8 6284 18 -10 100 380820 22 86952 28 -6 36
72505 9 4227 13 4 16 420788 23 27034 25 -2 4
74121 10 3611 10 0 0 483652 24 14180 22 2 4
87352 11 499 110 100 547203 25 6024 16 9 81
97624 12 2067 6 6 36 1016286 26 52439 27 -1 1
98861 13 10360 20 -7 49 1024609 27 45333 26 1 1
122926 14 10929 21 -7 49 1330998 28 2093 7 21 441

The Goldfeld—Quandt Test

Perhaps the most common formal test for heteroscedasticity is that of Goldfeld and Quandt (1965). It
assumes that o, , the standard deviation of the probability distribution of the disturbance term in

observation i, is proportional to the size of X;. It also assumes that the disturbance term is normally
distributed and satisfies the other Gauss—Markov conditions.

The n observations in the sample are ordered by the magnitude of X and separate regressions are
run for the first n' and for the last n' observations, the middle (n — 2n') observations being dropped
entirely. If heteroscedasticity is present, and if the assumption concerning its nature is true, the
variance of u in the last n' observations will be greater than that in the first »', and this will be reflected
in the residual sums of squares in the two subregressions. Denoting these by RSS; and RSS; for the
subregressions with the first #n' and the last n' observations, respectively, the ratio RSS,/RSS; will be
distributed as an F statistic with (n' — k) and (n' — k) degrees of freedom, where k is the number of
parameters in the equation, under the null hypothesis of homoscedasticity. The power of the test
depends on the choice of n' in relation to n. As a result of some experiments undertaken by them,
Goldfeld and Quandt suggest that n' should be about 11 when n is 30 and about 22 when 7 is 60,
suggesting that n' should be about three-eighths of n. If there is more than one explanatory variable in
the model, the observations should be ordered by that which is hypothesized to be associated with o;.

The null hypothesis for the test is that RSS, is not significantly greater than RSS), and the
alternative hypothesis is that it is significantly greater. If RSS, turns out to be smaller than RSS,, you
are not going to reject the null hypothesis and there is no point in computing the test statistic
RSS,/RSS,. However, the Goldfeld—Quandt test can also be used for the case where the standard
deviation of the disturbance term is hypothesized to be inversely proportional to X;. The procedure is
the same as before, but the test statistic is now RSS|/RSS,, and it will again be distributed as an F
statistic with (n' — k) and (n' — k) degrees of freedom under the null hypothesis of homoscedasticity.



HETEROSCEDASTICITY 8

Example

Using the data in Table 8.1, OLS regressions were run using the observations for the 11 countries with
smallest GDP and for the 11 countries with largest GDP. The residual sum of squares in the first
regression was 157 x 106, and in the second it was 13,518 x 10°. The ratio RSS,/RSS,| was therefore
86.1. The critical value of F(9,9) at the 0.1 percent level is 10.1, and the null hypothesis of
homoscedasticity was therefore rejected.

The Glejser Test

The Glejser test allows you to explore the nature of the heteroscedasticity a little more closely. We
relax the assumption that ¢, is proportional to X; and investigate whether some other functional form

may be more appropriate, for example
o, =B +B,X/ (8.5)

To use the procedure, you regress Y on X using OLS and then fit the absolute values of the
residuals, |e|, to the function for a given value of 7. You may fit several such functions, varying the
choice of 7. In each case the null hypothesis of homoscedasticity will be rejected if the estimate of S,
is significantly different from 0. If more than one function gives rise to a significant estimate of [,
that with the best fit may be a guide to the nature of the heteroscedasticity.

Example

Using the data on GDP and lel in Table 8.2, (8.5) was fitted using values of yfrom —1.0 to 1.5. The
results are summarized in Table 8.3.

Note that the different estimates of 3, are not comparable because the definition of the
explanatory variable, X7, is different in each case. However, the levels of R” are comparable because
the dependent variable is the same in each case. Significant coefficients, at the 1 percent level, are
obtained for the middle three values of 7. The best fits are obtained with yequal to 0.25 and 0.5, so the
standard deviation of the distribution of u does appear to be increasing with GDP but not in the same
proportion.

TABLE 8.3

Y b, s.e.(by) R?
-1.0 -3.51x 108 1.94 x 10® 0.11
-0.5 -421x10° 1.71 x 10° 0.19
-0.25 0.56 x 10° 0.20 x 10° 0.23

0.25 1640 520 0.28

0.5 36.1 11.8 0.27

1.0 0.026 0.010 0.21

1.5 19.8 x 10°¢ 9.3x10°° 0.15
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Exercises

8.1

The table gives data on government recurrent expenditure, G, investment, I, gross domestic
product, Y, and population, P, for 30 countries in 1997 (source: 1999 International Monetary
Fund Yearbook).
investigating whether government expenditure tends to crowd out investment fits the regression

G, Iand Y are measured in U.S.$ billion and P in million. A researcher

(standard errors in parentheses):

I = 18.10-1.07G + 0.36Y R*=10.99

(7.79)(0.14)  (0.02)

She sorts the observations by increasing size of Y and runs the regression again for the 11
countries with smallest ¥ and the 11 countries with largest Y. RSS for these regressions is 321
and 28101, respectively. Perform a Goldfeld—Quandt test for heteroscedasticity.

Country 1 G Y P Country 1 G Y P

Australia 94.5 75.5 407.9 18.5 Netherlands 73.0 49.9 360.5 15.6
Austria 46.0 39.2 206.0 8.1 New Zealand 12.9 9.9 65.1 3.8
Canada 119.3 125.1 631.2 30.3 Norway 353 30.9 1534 4.4
Czech Republic 16.0 10.5 52.0 10.3 Philippines 20.1 10.7 82.2 78.5
Denmark 342 42.9 169.3 53 Poland 28.7 234 135.6 38.7
Finland 20.2 25.0 121.5 5.1 Portugal 25.6 19.9 102.1 9.8
France 255.9 347.2 1409.2 58.6 Russia 84.7 94.0 436.0 147.1
Germany 4225  406.7 2102.7 82.1 Singapore 35.6 9.0 95.9 3.7
Greece 24.0 17.7 119.9 10.5 Spain 109.5 86.0 532.0 39.3
Iceland 1.4 1.5 7.5 0.3 Sweden 31.2 58.8 227.8 8.9
Ireland 14.3 10.1 73.2 3.7 Switzerland 50.2 38.7 256.0 7.1
Ttaly 190.8 189.7 11454 57.5 Thailand 48.1 15.0 153.9 60.6
Japan 1105.9 376.3 3901.3 126.1 Turkey 50.2 233 189.1 62.5
Korea 154.9 49.3 442.5 46.0 U.K. 210.1 230.7 1256.0 58.2
Malaysia 41.6 10.8 97.3 21.0 U.S.A. 1517.7 1244.1 8110.9 267.9

8.2  Fit an earnings function using your EAEF data set, taking EARNINGS as the dependent variable

8.3"

and S, ASVABC, and MALE as the explanatory variables, and perform a Goldfeld—Quandt test
for heteroscedasticity in the S dimension. (Remember to sort the observations by S first.)

The following regressions were fitted using the Shanghai school cost data introduced in Section
6.1 (standard errors in parentheses):

COST = 24,000 + 339N R*=0.39
(27,000)  (50)
COST = 51,000 — 4,0000CC + 152N + 284NOCC R® = 0.68.

(31,000) (41,000) (60) (76)
where COST is the annual cost of running a school, N is the number of students, OCC is a

dummy variable defined to be 0 for regular schools and 1 for occupational schools, and NOCC
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is a slope dummy variable defined as the product of N and OCC. There are 74 schools in the
sample. With the data sorted by N, the regressions are fitted again for the 26 smallest and 26
largest schools, the residual sum of squares being as shown in the table.

26 smallest 26 largest
First regression 7.8x 10" 54.4x10"
Second regression 6.7x 10" 13.8x10"

Perform a Goldfeld—Quandt test for heteroscedasticity for the two models and, with reference to
Figure 6.5, explain why the problem of heteroscedasticity is less severe in the second model.

8.4* The file educ.dta in the heteroscedastic data sets folder on the website contains international
cross-section data on aggregate expenditure on education, EDUC, gross domestic product,
GDP, and population, POP, for a sample of 38 countries in 1997. EDUC and GDP are
measured in U.S. $ million and POP is measured in thousands. Download the data set, plot a
scatter diagram of EDUC on GDP, and comment on whether the data set appears to be subject
to heteroscedasticity. Sort the data set by GDP and perform a Goldfeld—Quandt test for
heteroscedasticity, running regressions using the subsamples of 14 countries with the smallest
and greatest GDP.

8.3 What Can You Do about Heteroscedasticity?

Suppose that the true relationship is
Yi=Bi+ BXi +u (8.6)

Let the standard deviation of the disturbance term in observation i be ¢, . If you happened to know
o, for each observation, you could eliminate the heteroscedasticity by dividing each observation by

its value of 0. The model becomes

Y, 1 X, u
=B+ ot 8.7)
o (e

u; u; u; u;

The disturbance term u;/ o, is homoscedastic because the population variance of — 1is
i .

L

2
E [”—] :%E(u}):%of:l (8.8)
o o> "

Therefore, every observation will have a disturbance term drawn from a distribution with population
variance 1, and the model will be homoscedastic. The revised model may be rewritten
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Y! = Bihi + BX! + u), (8.9)

where ¥/ = Y/o, , Xi' = X/ 0, , his a new variable whose value in observation i is 1/0, , and u; =

ui/o, . Note that there should not be a constant term in the equation. By regressing Y'on 4 and X ',

0
you will obtain efficient estimates of ; and 3, with unbiased standard errors.

A mathematical demonstration that the revised model will yield more efficient estimates than the
original one is beyond the scope of this text, but it is easy to give an intuitive explanation. Those
observations with the smallest values of o, will be the most useful for locating the true relationship

between Y and X because they will tend to have the smallest disturbance terms. We are taking
advantage of this fact by performing what is sometimes called a weighted regression. The fact that
observation i is given weight 1/0, automatically means that the better its quality, the greater the

weight that it receives.
The snag with this procedure is that it is most unlikely that you will know the actual values of the
o, . However, if you can think of something that is proportional to it in each observation, and divide

the equation by that, this will work just as well.
Suppose that you can think of such a variable, which we shall call Z, and it is reasonable to
suppose that ¢, is proportional to Z;:

o, =M. (8.10)

Y. . .
—=B,—+pB, —+— (8.11)

2

u, 1 o 1, Xz,
El—+|=—Eu})=—0: ==L =X 8.12
(z) Z? (u7) z: " (12

i

We do not need to know the value of A, and indeed in general will not know it. It is enough that it
should be constant for all observations.

In particular, it may be reasonable to suppose that o, is roughly proportional to X;, as in the

Goldfeld—Quandt test. If you then divide each observation by its value of X, the model becomes

Y. 1 u.
L S S + L , 8.13
X, ﬁl X, [32 X, ( )

1 1 1
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and, with a little bit of luck, the new disturbance term u;/X; will have constant variance. You now
regress Y/X on 1/X, including a constant term in the regression. The coefficient of 1/X will be an
efficient estimate of B, and the constant will be an efficient estimate of f,. In the case of the
manufacturing output example in the previous section, the dependent variable would be manufacturing
output as a proportion of GDP, and the explanatory variable would be the reciprocal of GDP.

Sometimes there may be more than one variable that might be used for scaling the equation. In
the case of the manufacturing output example, an alternative candidate would be the size of the
population of the country, POP. Dividing the original model through by POP, one obtains

Y, 1 X. u,
L= + L, 8.14
por,~ Prpop P> POP,  POP, (819

L L

and again one hopes that the disturbance term, u/POP; will have constant variance across
observations. Thus now one is regressing manufacturing output per capita on GDP per capita and the
reciprocal of the size of the population, this time without a constant term.

In practice it may be a good idea to try several variables for scaling the observations and to
compare the results. If the results are roughly similar each time, and tests fail to reject the null
hypothesis of homoscedasticity, your problem should be at an end.

Examples

In the previous section it was found that a linear regression of MANU on GDP using the data in Table
8.1 and the model

MANU = B, + B.GDP + u (8.15)
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Figure 8.5.
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Figure 8.6.

was subject to severe heteroscedasticity. One possible remedy might be to scale the observations by
population, the model becoming

MANU 1 GDP u
=B, +B, + >
POP POP POP POP

(8.16)

Figure 8.5 provides a plot of MANU/POP on GDP/POP. Despite scaling, the plot still looks
heteroscedastic. When (8.16) is fitted using the 11 countries with smallest GDP per capita and the 11
countries with the greatest, the residual sums of squares are 5,378,000 and 17,362,000. The ratio, and
hence the F statistic, is 3.23. If the subsamples are small, it is possible to obtain high ratios under the
null hypothesis of homoscedasticity. In this case, the null hypothesis is just rejected at the 5 percent
level, the critical value of F(9, 9) being 3.18.

Figure 8.6 shows the result of scaling through by GDP itself, manufacturing as a share of GDP
being plotted against the reciprocal of GDP. In this case the residual sums of squares for the
subsamples are 0.065 and 0.070, and so finally we have a model where the null hypothesis of
homoscedasticity is not rejected.

We will compare the regression results for the unscaled model and the two scaled models,
summarized in equations (8.17) — (8.19) (standard errors in parentheses):

MANU =604 + 0.194 GDP R*=0.89 (8.17)
(5,700) (0.013)

MANU
POP

— 612 1 40182 YPF R*=0.70 (8.18)

137007 0016 7OF
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MANU

=0.189 + 533 L R*=0.02 (8.19)
GDP

(0.019) (841)

First, note that the estimate of the coefficient of GDP is much the same in the three regressions:
0.194, 0.182, and 0.189 (remember that it becomes the intercept when scaling through by the X
variable). One would not expect dramatic shifts since heteroscedasticity does not give rise to bias.
The estimator in the third estimate should have the smallest variance and therefore ought to have a
tendency to be the most accurate. Perhaps surprisingly, its standard error is the largest, but then the
standard errors in the first two regressions should be disregarded because they are invalidated by the
heteroscedasticity.

In this model the intercept does not have any sensible economic interpretation. In any case its
estimate in the third equation, where it has become the coefficient of 1/GDP, is not significantly
different from 0. The only apparent problem with the third model is that R* is very low. We will
return to this in the next subsection.

Nonlinear Models

Heteroscedasticity, or perhaps apparent heteroscedascity, may be a consequence of misspecifying the
model mathematically. Suppose that the true model is nonlinear, for example

Y =8,XPy (8.20)

with (for sake of argument) 3, and f3, positive so that Y is an increasing function of X. The
multiplicative disturbance term v has the effect of increasing or reducing Y by a random proportion.
Suppose that the probability distribution of v is the same for all observations. This implies, for
example, that the probability of a 5 percent increase or decrease in Y due to its effects is just the same
when X is small as when X is large. However, in absolute terms a 5 percent increase has a larger effect
on Y when X is large than when X is small. If Y is plotted against X, the scatter of observations will
therefore tend to be more widely dispersed about the true relationship as X increases, and a linear
regression of Y on X may therefore exhibit heteroscedasticity.
The solution, of course, is to run a logarithmic regression instead:

log Y=1og B + B,log X + log v (8.21)

Not only would this be a more appropriate mathematical specification, but it makes the regression
model homoscedastic. log v now affects the dependent variable, log Y, additively, so the absolute size
of its effect is independent of the magnitude of log X.

Figure 8.7 shows the logarithm of manufacturing output plotted against the logarithm of GDP
using the data in Table 8.1. At first sight at least, the plot does not appear to exhibit
heteroscedasticity. Logarithmic regressions using the subsamples of 11 countries with smallest and
greatest GDP yield residual sums of squares 2.14 and 1.04, respectively. In this case the conventional
Goldfeld—Quandt test is superfluous. Since the second RSS is smaller than the first, it cannot be
significantly greater. = However the Goldfeld—Quandt test can also be used to test for
heteroscedasticity where the standard deviation of the distribution of the disturbance term is inversely
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Figure 8.7.

proportional to the size of the X variable. The F statistic is the same, with RSS; and RSS;
interchanged. In the present case the F statistic if 2.06, which is lower than the critical value of F at
the 5 percent level, and we do not reject the null hypothesis of homoscedasticity. Running the
regression with the complete sample, we obtain (standard errors in parentheses):

log MANU = -1.694 +0.999 log GDP R*=0.90 (8.22)
(0.785) (0.066)

implying that the elasticity of MANU with respect to GDP is equal to 1.

We now have two models free from heteroscedasticity, (8.19) and (8.22). The latter might seem
more satisfactory, given that it has a very high R* and (8.19) a very low one, but in fact, in this
particular case, they happen to be equivalent. (8.22) is telling us that manufacturing output increases
proportionally with GDP in the cross-section of countries in the sample. In other words,
manufacturing output accounts for a constant proportion of GDP. To work out this proportion, we
rewrite the equation as

MANU = e "**GDP"” =0.184GDP"*” (8.23)
(8.19) is telling us that the ratio MANU/GDP is effectively a constant, since the 1/GDP term appears to
be redundant, and that the constant is 0.189. Hence in substance the interpretations coincide.
White’s Heteroscedasticity-Consistent Standard Errors

It can be shown that the population variance of the slope coefficient in a simple OLS regression with a
heteroscedastic disturbance term is given by
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where o is the variance of the disturbance term in observation i and w;, its weight in the numerator, is

given by

v\2
w. = M (8.25)

ﬁ(xj -X)
j=1

White (1980) demonstrated that a consistent estimator of szOLs is obtained if the squared residual in
2

observation i is used as an estimator of ¢, . Thus in a situation where heteroscedasticity is suspected,

but there is not enough information to identify its nature, it is possible to overcome the problem of
biased standard errors, at least in large samples, and the ¢ tests and F tests are asymptotically valid.
Two points, need to be kept in mind, however. One is that, although the White estimator is consistent,
it may not perform well in finite samples (MacKinnon and White, 1985). The other is that the OLS
estimators remain inefficient.

How Serious Are the Consequences of Heteroscedasticity?

This will depend on the nature of the heteroscedasticity and there are no general rules. In the case of
the heteroscedasticity depicted in Figure 8.3, where the standard deviation of the disturbance term is
proportional to X and the values of X are the integers from 5 to 44, the population variance of the OLS
estimator of the slope coefficient is approximately double that of the estimator using equation (8.13),
where the heteroscedasticity has been eliminated by dividing through by X.  Further, the standard
errors of the OLS estimators are underestimated, giving a misleading impression of the precision of
the OLS coefficients.

Exercises

8.5 The researcher mentioned in Exercise 8.1 runs the following regressions as alternative
specifications of her model (standard errors in parentheses):

L —0.03l —0.69g + 0.34Z R*=0.97 (D)
P P P P

0.28)  (0.16) (0.03)
L 039 + 0031 _ 0.93E R*=0.78 )
Y Y Y

0.04) (0.42)  (0.22)
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logl= 244 — 0.63log G + 1.60logY R>=0.98 3)
(0.26) (0.12) (0.12)

She sorts the sample by Y/P, G/Y, and log Y, respectively, and in each case runs the regression
again for the subsamples of of observations with the 11 smallest and 11 greatest values of the
sorting variable. The residual sums of squares are as shown in the table:

11 smallest 11 largest

(1) 1.43 12.63
2) 0.0223 0.0155
3) 0.573 0.155

Perform a Goldfeld—Quandt test for each model specification and discuss the merits of each
specification. Is there evidence that investment is an inverse function of government
expenditure?

8.6 Using your EAEF data set, repeat Exercise 8.2 with LGEARN as the dependent variable. Is
there evidence that this is a preferable specification?

8.7 Repeat Exercise 8.4, using the Goldfeld—Quandt test to investigate whether scaling by
population or by GDP, or whether running the regression in logarithmic form, would eliminate
the heteroscedasticity. Compare the results of regressions using the entire sample and the
alternative specifications.



STOCHASTIC REGRESSORS AND
MEASUREMENT ERRORS

In the basic least squares regression model, it is assumed that the explanatory variables are
nonstochastic.  This is typically an unrealistic assumption, and it is important to know the
consequences of relaxing it. We shall see that in some contexts we can continue to use OLS, but in
others, for example when one or more explanatory variables are subject to measurement error, it is a
biased and inconsistent estimator. The chapter ends by introducing an alternative technique,
instrumental variables estimation, that may have more desirable properties.

9.1 Stochastic Regressors

So far we have assumed that the regressors — the explanatory variables — in the regression model are
nonstochastic. This means that they do not have random components and that their values in the
sample are fixed and unaffected by the way the sample is generated. Perhaps the best example of a
nonstochastic variable is time, which, as we will see when we come to time series analysis, is
sometimes included in the regression model as a proxy for variables that are difficult to measure, such
as technical progress or changes in tastes. Nonstochastic explanatory variables are actually unusual in
regression analysis. In the FAEF data sets provided for practical work, there are similar numbers of
individuals with different amounts of schooling, but the numbers do vary from sample to sample and
hence when an earnings function is fitted it has to be conceded that the schooling variable has a
random component. However, if stratified random sampling has been used to generate a sample, then
the variable that has been used for stratification may be nonstochastic. For example, the sex variable
in the FAEF data sets is nonstochastic because by construction each sample has exactly 325 males and
245 females. But such examples are relatively uncommon and nearly always confined to dummy
variables.

The reason for making the nonstochasticity assumption has been the technical one of simplifying
the analysis of the properties of the regression estimators. For example, we saw that in the regression
model

Y=P+BX +u, (9.1)

the OLS estimator of the slope coefficient may be decomposed as follows:

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 06.05.01.
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_ Cov(X,Y) — B, + Cov(X,u) 9.2)
Var(X) Var(X)

Now, if X is nonstochastic, so is Var(X), and the expected value of the error term can be written
E[Cov(X, u)]/Var(X). Furthermore, if X is nonstochastic, E[Cov(X, u)] is 0. Hence we have no trouble
proving that b, is an unbiased estimator of f3,. Although a proof was not supplied, the nonstochasticity
assumption was also used in deriving the expression for the population variance of the coefficient.

Fortunately, the desirable properties of the OLS estimators remain unchanged even if the
explanatory variables have stochastic components, provided that these components are distributed
independently of the disturbance term, and provided that their distributions do not depend on the
parameters B, [, or ¢,. We will demonstrate the unbiasedness and consistency properties and as
usual take efficiency on trust.

Unbiasedness
If X is stochastic, Var(X) cannot be treated as a scalar, so we cannot rewrite E[Cov(X,u)/Var(X)] as

E[Cov(X, u)]/Var(X). Hence the previous proof of unbiasedness is blocked. However, we can find
another route by decomposing the error term:

J —
— X -X)u. —u
Cov(X,u) n Z‘( ' Yty ~10)

Var(X) Var(X)

X, - X) _
__Z(Var(X)} -0 O

=—2f<X,-)<u,- —7)
noig

where f(X;)=(X,; - )?)/Var(X) . Now, if X and u are independently distributed, E[f(X,)(u; —u)]
may be decomposed as the product of E[f(x;)]and E(u; —u) (see the definition of independence in

the Review). Hence
E[f(X)(u; —u)]=E[f(X)IEu; —u)=E[f(X;)]x0 9.4)

since E(u;) is 0 in each observation, by assumption. (This implies, of course, that E(u« ) is also 0).

. 1~ _ o .
Hence, when we take the expectation of —z f(X,))(u; —u), each term within the summation has
i=1
expected value 0. Thus the error term as a whole has expected value 0 and b; is an unbiased estimator

of B.
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Consistency

We know that, in general, plim (A/B) is equal to plim(A)/plim(B), where A and B are any two
stochastic quantities, provided that both plim(A) and plim(B) exist and that plim(B) is nonzero (see the
Review; "plim" simply means "the limiting value as the sample size becomes large"). We also know
that sample expressions tend to their population counterparts as the sample size becomes large, so plim

Cov(X, u) is the population covariance of X and u« and plim Var(X) is 6)2( , the population variance of

X. If X and u are independent, the population covariance of X and u is 0 and hence

plim Cov(X,u) _ 0

limb, =, + +—= 9.5
p » =B, plim Var(X) B, 6)2( B, 9.5)

9.2 The Consequences of Measurement Errors

It frequently happens in economics that, when you are investigating a relationship, the variables
involved have been measured defectively. For example, surveys often contain errors caused by the
person being interviewed not remembering properly or not understanding the question correctly.
However, misreporting is not the only source of inaccuracy. It sometimes happens that you have
defined a variable in your model in a certain way, but the available data correspond to a slightly
different definition. Friedman's critique of the conventional consumption function, discussed in
Section 9.3, is a famous case of this.

Measurement Errors in the Explanatory Variable(s)

Let us suppose that a variable Y depends on a variable Z according to the relationship
Y, = ﬁl + ﬁzZi + v; (96)

where v is a disturbance term with mean 0 and variance o, distributed independently of Z. We shall

suppose that Z cannot be measured absolutely accurately, and we shall use X to denote its measured
value. In observation i, X; is equal to the true value, Z;, plus the measurement error, w;:

Xl' = Z,' + w; (97)

We shall suppose that w has mean 0 and variance ¢, that Z has population variance o , and that w is

distributed independently of Z and v.
Substituting from (9.7) into (9.6), we obtain

Yi= i+ Bo(Xi —wp) +vi = Bi + BXi + v — Bow; 9.8)
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This equation has two random components, the original disturbance term v and the measurement error

(multiplied by —f3,). Together they form a composite disturbance term, which we shall call u:
u; =v;— Pow; 9.9)
(9.8) may then be written
Yi=Bi+ BXi+u (9.10)

You have your data on Y (which, for the time being, we shall assume has been measured accurately)
and X, and you unsuspectingly regress Y on X.
As usual, the regression coefficient b is given by

_Cov(X,Y)

Cov(X,u)
) = B, + .

9.11)
Var(X) Var(X)

Looking at the error term, we can see that it is going to behave badly. By virtue of (9.7) and (9.9),
both X; and u; depend on w;. The population covariance between X and u is nonzero and so b; is an
inconsistent estimator of B,. Even if you had a very large sample, your estimate would be inaccurate.
In the limit it would underestimate 3, by an amount

2

" B,. 9.12)
o, +0,,

A proof of this is given below. First we will note its implications, which are fairly obvious. The
bigger the population variance of the measurement error, relative to the population variance of Z, the

bigger will be the bias. For example, if ¢ were equal to 0.256, the bias would be

0.250
(9.13)
1.2502 P

which is -0.2,. Even if the sample were very large, your estimate would tend to be 20 percent below
the true value if 8, were positive, 20 percent above it if 3, were negative.

Figure 9.1 illustrates how measurement errors give rise to biased regression coefficients, using the
model represented by (9.6) and (9.7). The circles represent the observations on Z and Y, the values of Y
being generated by a process of type (9.6), the true relationship being given by the dashed line. The
solid markers represent the observations on X and Y, the measurement error in each case causing a
horizontal shift marked by a dotted line. Positive measurement errors tend to cause the observations to
lie under the true relationship, and negative ones tend to cause the observations to lie above it. This
causes the scatter of observations on X and Y to look flatter than that for Z and Y and the best-fitting
regression line will tend to underestimate the slope of the true relationship. The greater the variance of
the measurement error relative to that of Z, the greater will be the flattening effect and the worse the
bias.
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Figure 9.1. Effect of errors of measurement of the explanatory variable

Imperfect Proxy Variables

In Chapter 7 it was shown that, if we are unable to obtain data on one of the explanatory variables in a
regression model and we run the regression without it, the coefficients of the other variables will in
general be biased and their standard errors will be invalid. However, in Section 7.4 we saw that if we
are able to find a perfect proxy for the missing variable, that is, another variable that has an exact
linear relationship with it, and use that in its place in the regression, most of the regression results will
be saved. Thus, the coefficients of the other variables will not be biased, their standard errors and
associated ¢ tests will be valid, and R*> will be the same as if we had been able to include the
unmeasurable variable directly. We will not be able to obtain an estimate of the coefficient of the
latter, but the ¢ statistic for the proxy variable will be the same as the ¢ statistic for the unmeasurable
variable.

Unfortunately, it is unusual to find a perfect proxy. Generally the best that you can hope for is a
proxy that is approximately linearly related to the missing variable. The consequences of using an
imperfect proxy instead of a perfect one are parallel to those of using a variable subject to
measurement error instead of one that is free from it. It will cause the regression coefficients to be
biased, the standard errors to be invalid, and so on, after all.

You may nevertheless justify the use of a proxy if you have reason to believe that the degree of
imperfection is not so great as to cause the bias to be serious and the standard errors to be misleading.
Since there is normally no way of testing whether the degree of imperfection is great or small, the case
for using a proxy has to be made on subjective grounds in the context of the model.
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Proof of the Inconsistency Expression

Since X and u are not distributed independently of each other, there is no simple way of summarizing
the behavior of the term Cov(X, u)/Var(X) in small samples. We cannot even obtain an expression for
its expected value. Rewriting it as (9.3) does not help because E[f(X,)(u; —u)] cannot be
decomposed as E[f(X;)IE(u; —u)]. The most we can do is to predict how it would behave if the

sample were very large. It will tend to plim Cov(X, u) divided by plim Var(X). We will look at these
separately.

Using the definitions of X and u, the sample variance between them may be decomposed as
follows:

Cov(X, u) = Cov[(Z + w), (v — Bw)]
= Cov(Z, v) + Cov(w, v) — Cov(Z, Bw) — Cov(w, Bow) (9.14)

using the covariance rules. In large samples, sample variances tend towards their population
counterparts. Since we have assumed that v and w are distributed independently of each other and Z,
the population covariances of v and w, Z and v, and Z and Bw are all 0. This leaves us with the

population covariance of w and Bw, whichis B,5.. Hence

plim Cov(X, u) = — 8,02 (9.15)
Now for plim Var(X). Since X is equal to (Z + w),

plim Var(X) = plim Var(Z + w)
= plim Var(Z) + plim Var(w) + 2 plim Cov(Z, w)

=0,+0.. (9.16)

The sample variances tend to their population counterparts and the sample covariance tends to 0 if Z
and w are distributed independently. Thus

plimCov(X,u) _ , _ B,o’
plim Var(X) g

OLS _

plimby, ° =f3, + (9.17)

c,+0’

Note that we have assumed that w is distributed independently of v and Z. The first assumption is
usually plausible because in general there is no reason for any measurement error in an explanatory
variable to be correlated with the disturbance term. However, we may have to relax the second

assumption. If we do, b?LS remains inconsistent, but the expression for the bias becomes more

complex. See Exercise 9.4.



STOCHASTIC REGRESSORS AND MEASUREMENT ERRORS 7

Measurement Errors in the Dependent Variable

Measurement errors in the dependent variable do not matter as much. In practice they can be thought
of as contributing to the disturbance term. They are undesirable, because anything that increases the
noise in the model will tend to make the regression estimates less accurate, but they will not cause the
regression estimates to be biased.

Let the true value of the dependent variable be Q, and the true relationship be

Qi = ﬁl + ﬁzX,' + v;, (918)

where v is a disturbance term. If Y; is the measured value of the dependent variable in observation i,
and r; is the measurement error,

Yi=0i+r. (9.19)
Hence the relationship between the observed value of the dependent variable and X is given by
Yi—ri=Bi+ X + v, (9.20)
which may be rewritten
Yi= B+ BoXi+ us, (9.21)

where u is the composite disturbance term (v + r).

The only difference from the usual model is that the disturbance term in (9.21) has two
components: the original disturbance term and the error in measuring Y. The important thing is that
the explanatory variable X has not been affected. Hence OLS still yields unbiased estimates provided
that X is nonstochastic or that it is distributed independently of v and ». The population variance of the
slope coefficient will be given by

2
u

2 2
noy noy

o, ol+o;

o, = (9.20)

and so will be greater than it would have been in the absence of measurement error, reducing the
precision of the estimator. The standard errors remain valid but will be larger than they would have
been in the absence of the measurement error, reflecting the loss of precision.

Exercises

9.1 In a certain industry, firms relate their stocks of finished goods, Y, to their expected annual
sales, X°, according to a linear relationship

Y=+ X
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9.2

9.3*

9.4*

Actual sales, X, differ from expected sales by a random quantity u, that is distributed with mean
0 and constant variance:

X=X+u

u is distributed independently of X°. An investigator has data on Y and X (but not on X°) for a
cross-section of firms in the industry. Describe the problems that would be encountered if OLS
were used to estimate f3; and 3,, regressing Y on X.

In a similar industry, firms relate their intended stocks of finished goods, Y*, to their expected
annual sales, X°, according to a linear relationship

Y*=[31+[32X"’

Actual sales, X, differ from expected sales by a random quantity u, which is distributed with
mean 0 and constant variance:

X=X+u

u is distributed independently of X°. Since unexpected sales lead to a reduction in stocks, actual
stocks are given by

Y=Y —u

An investigator has data on Y and X (but not on Y or X% for a cross-section of firms in the
industry. Describe analytically the problems that would be encountered if OLS were used to
estimate f3; and f,, regressing Y on X. [Note: You are warned that the standard expression for
measurement error bias is not valid in this case.]

A variable Q is determined by the model

Q=01+ BX+v,

where X is a variable and v is a disturbance term that satisfies the Gauss—Markov conditions.
The dependent variable is subject to measurement error and is measured as Y where

Y=0Q+r

and r is the measurement error, distributed independently of v. Describe analytically the
consequences of using OLS to fit this model if

(1) The expected value of r is not equal to 0 (but r is distributed independently of Q),

(2) ris not distributed independently of Q (but its expected value is 0).

A variable Y is determined by the model

Y:ﬁ1+ﬁzz+v,
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9.5%

where Z is a variable and v is a disturbance term that satisfies the Gauss—Markov conditions.
The explanatory variable is subject to measurement error and is measured as X where

X=Z+w

and w is the measurement error, distributed independently of v. Describe analytically the
consequences of using OLS to fit this model if

(1) The expected value of w is not equal to O (but w is distributed independently of Z),

(2) w is not distributed independently of Z (but its expected value is 0).

A researcher investigating the shadow economy using international cross-section data for 25
countries hypothesizes that consumer expenditure on shadow goods and services, Q, is related
to total consumer expenditure, Z, by the relationship

Q:ﬁ1+ﬁzZ+v

where v is a disturbance term that satisfies the Gauss—Markov conditions. Q is part of Z and any
error in the estimation of Q affects the estimate of Z by the same amount. Hence

Yi=Qit+w,
and
Xl'=Z,'+Wl'

where Y; is the estimated value of Q,, X; is the estimated value of Z;, and w; is the measurement

error affecting both variables in observation i. It is assumed that the expected value of w is 0

and that v and w are distributed independently of Z and of each other.

(1) Derive an expression for the large-sample bias in the estimate of 3, when OLS is used to
regress Y on X, and determine its sign if this is possible. [Nofe: You are warned that the
standard expression for measurement error bias is not valid in this case.]

(2) In a Monte Carlo experiment based on the model above, the true relationship between Q
and Zis

0=2.0+02Z
Sample b s.e.(by)) b, s.e.(by) R?
1 -0.85 1.09 042 0.07 0.61
2 -0.37 145 036 0.10 0.36
3 -2.85 0.88  0.49 0.06 0.75
4 221 159 054 0.10 0.57
5 -1.08 143 047 0.09 0.55
6 -1.32 139 051 0.08 0.64
7 -3.12 .12 054 0.07 0.71
8 —0.64 095 045 0.06 0.74
9 0.57 0.89 038 0.05 0.69
10 -0.54 126 0.40 0.08 0.50
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[
Y
[«2)

A sample of 25 observations is generated using the integers 1, 2, ..., 25 as data for Z. The
variance of Zis 52.0. A normally-distributed random variable with mean O and variance 25
is used to generate the values of the measurement error in the dependent and explanatory
variables. The results with 10 samples are summarized in the table. Comment on the
results, stating whether or not they support your theoretical analysis.

(3) The graph shows plots the points (Q, Z) and (Y, X) for the first sample, with each (Q, Z)
point linked to the corresponding (Y, X) point. Comment on this graph, given your answers
to parts (1) and (2).

9.3 Friedman's Critique of the Conventional Consumption Function

Now we come to the most celebrated application of measurement error analysis in the whole of
economic theory: Friedman's critique of the use of OLS to fit a consumption function (Friedman,
1957). We discuss here Friedman's analysis of the problem and in Section 12.3 we will discuss his
solution.

In Friedman's model, the consumption of individual (or household) i is related, not to actual
(measured) current income Y;, but to permanent income, which will be denoted Y, . Permanent income
is to be thought of as a medium-term notion of income: the amount that the individual can more or less
depend on for the foreseeable future, taking into account possible fluctuations. It is subjectively
determined by recent experience and by expectations about the future, and because it is subjective it
cannot be measured directly. Actual income at any moment may be higher or lower than permanent
income depending on the influence of short-run random factors. The difference between actual and
permanent income caused by these factors is described as transitory income, ¥;’. Thus

Y=Y+ Y/ (9.23)
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In the same way, Friedman makes a distinction between actual consumption, C;, and permanent
consumption, C;”. Permanent consumption is the level of consumption justified by the level of
permanent income. Actual consumption may differ from it as special, unforeseen circumstances arise
(unanticipated medical bills, for example) or as a consequence of impulse purchases. The difference
between actual and permanent consumption is described as transitory consumption, C;’. Thus

C=c/+c/. (9.24)

Y and C/ are assumed to be random variables with mean 0 and constant variance, uncorrelated with
Y and C/ and each other. Friedman further hypothesizes that permanent consumption is directly
proportional to permanent income:

CiP = ﬁzYiP (9.25)

If the Friedman model is correct, what happens if you ignorantly try to fit the usual simple
consumption function, relating measured consumption to measured income? Well, both the dependent
and the explanatory variables in the regression

A

C, =bi+bY, (9.26)

have been measured inappropriately, C;' and Y;" being the measurement errors. In terms of the
previous section,

Z;= YiP, w; = YiT 0= CiP, ri= CiT 9.27)

As we saw in that section, the only effect of the measurement error in the dependent variable is to
increase the variance of the disturbance term. The use of the wrong income concept is more serious.
It causes the estimate of 3 to be inconsistent. From (9.11), we can see that in large samples

ol

B, (9.28)

plim b, = B, ————
GYP +GYT

where G;T is the population variance of ¥ and G;p is the population variance of Y*. It implies that,

even in large samples, the apparent marginal propensity to consume (your estimate b,) will be lower
than the value of 3, in the true relationship (9.25). The size of the bias depends on the ratio of the
variance of transitory income to that of permanent income. It will be highest for those occupations
whose earnings are most subject to fluctuations. An obvious example is farming. Friedman's model
predicts that, even if farmers have the same [3, as the rest of the population, an OLS estimate of their
marginal propensity to consume will be relatively low, and this is consistent with the facts (Friedman,
1957, pp. 57 {f.).
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An lllustration

The Friedman analysis will be illustrated with a Monte Carlo experiment. It was supposed that a
sample of 20 individuals had permanent incomes 2000, 2100, 2200, ... , 3900. It was also assumed
that each individual had transitory income equal to 200 times a random number drawn from a normal
population with mean O and unit variance. Measured income for each individual was the sum of
permanent and transitory income. It was assumed that the true value of 3, was 0.9, so that permanent
consumption was 0.9 times the corresponding permanent income. There was no provision for a
transitory component for consumption, so measured consumption was equal to permanent
consumption. When measured consumption was regressed on measured income, the result was
(standard errors in parentheses)

C =443 +075Y R*=0.89 (9.29)
(179) (0.06)

As anticipated, the estimated marginal propensity to consume is below the true value. Indeed, if you
construct a 95 percent confidence interval using the regression results, the true value lies outside it and
would therefore be rejected at the 5 percent significance level. With 18 degrees of freedom, the
critical level of 7 is 2.10, so the confidence interval would be calculated as

0.75-2.10x0.06 < B, < 0.75+2.10x0.06 (9.30)

that is,
0.62 < 3, £0.88 (9.31)

Therefore you would make a type I error. Actually, the presence of measurement errors makes the
standard error of Y, and hence the confidence interval, invalid. A further side effect is that the
constant term, which ought to have been 0 since there was no intercept in the model, appears to be
significantly positive at the 5 percent level. The experiment was repeated nine further times and the
results are summarized in Table 9.1, set A.

b, clearly gives a downward-biased estimate of the marginal propensity to consume. It is lower
than the true value of 0.90 in nine of the 10 samples. We will check whether the results support the

analysis leading to equation (9.28). In this example G}%T is 40,000, since Y’ has standard deviation

200. We will assume that in large samples Y” takes the values 2,000, 2,100, ... , 3,900 with equal

probability, and hence that G?,) is the variance of these numbers, which is 332,500. Hence in large

samples 3, would be underestimated by an amount

_ 40,000
332,500 + 40,000

x0.90=0.11x0.90=0.10 (9.32)
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TABLE 9.1

Experiments with Measurement Error

Experiment A Experiment B
Sample b, s.e.(by) b, s.e.(by) b, s.e.(by) b, s.e.(by)
1 443 179 0.75 0.06 1001 251 0.56 0.08
2 152 222 0.83 0.07 755 357 0.62 0.11
3 101 222 0.89 0.08 756 376 0.68 0.13
4 195 179 0.83 0.06 668 290 0.66 0.09
5 319 116 0.78 0.04 675 179 0.64 0.06
6 371 200 0.78 0.07 982 289 0.57 0.10
7 426 161 0.74 0.05 918 229 0.56 0.07
8 —-146 275 0.93 0.09 625 504 0.66 0.16
9 467 128 0.74 0.04 918 181 0.58 0.06
10 258 153 0.80 0.05 679 243 0.65 0.08

It should be stressed that this is valid only for large samples, and that we are not entitled to say
anything about the behavior of b, in small samples. However, in this case we can see that it does in
fact provide a good guide. Looking at the estimates of b, in the 10 samples, we see that they appear to
be randomly distributed about 0.80, instead of 0.90, and that there is thus a downwards bias of about
0.10.

A consequence of the underestimation of f3, is that f3; is overestimated, appearing to be positive
even though its true value is 0. Indeed in four cases a ¢ test would indicate that it is significantly
different from O at the 5 percent significance level. However, in these conditions the ¢ tests are invalid
because the failure of the fourth Gauss—Markov condition to be satisfied causes the standard errors,
and hence the ¢ statistics, to be estimated wrongly.

What would happen if we increased the variance of Y’, keeping everything else the same? In set

B in Table 9.1 the original random numbers were multiplied by 400 instead of 200, so Gir is now

160,000 instead of 40,000. The error term in expression (9.26) is now equal to 160,000/(332,500 +
160,000), which is 0.32, so we would anticipate that b, would tend to (0.9 — 0.32x0.9), which is 0.61,
in large samples. Again, we see that this is a good guide to the actual behavior of b,, even though each
sample has only 20 observations. As should be predicted, the estimates of 3, are even greater than in
set A.

Policy Implications

There are two separate and opposite implications for the multiplier. First, if Friedman is right, a
regression of actual consumption on actual income will yield an underestimate of the marginal
propensity to consume and hence an underestimate of the multiplier. In the illustration in the previous
section, the true value of 3, was 0.90, so the true value of the multiplier was 10. But in set A the
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estimate of 3, was tending to 0.80, implying a multiplier of only 5. In set B, it would have been lower
still. The estimate of 3, was tending to 0.61, giving a multiplier of 2.6.

If the government underestimates the multiplier, it will underestimate the effects of fiscal policy.
For example, an increase in government expenditure intended to reduce unemployment may in fact
lead to an excessive increase in effective demand and an increase in the rate of inflation.

The second implication is that the multiplier applies only to that part of a change in income that is
perceived as permanent, because (according to Friedman) consumption depends only on permanent
income. Thus, if the increase in government expenditure is thought to be temporary, it will not affect
consumption at all (as a first approximation), and the multiplier associated with it will be 1.

These remarks must however be qualified by a consideration of the form in which individuals
hold their savings. We have implicitly assumed so far that they take them in the form of financial
assets (bank deposits, bonds, and so on). However, in the Friedman model, expenditure on consumer
durables is considered to be a form of saving. An increase in transitory income will not be spent on
ordinary consumer goods, but it may be partly saved in the form of purchases of consumer durables,
and the increase in the demand for these will give rise to a multiplier effect. The multiplier for
transitory income may not be so low after all.

This discussion has been confined to consumption theory, the original application of Friedman's
concept of permanent income. But the concept can be, and has been, used in other fields. In
particular, in monetary theory it can be argued that the transactions demand for cash should be related
to permanent, rather than actual, income, and in investment theory it can be argued that the accelerator
should be related to changes in permanent income rather than changes in actual income. The seminal
contributions are Friedman (1959) and Eisner (1967).

Exercises

9.6 In a certain economy the variance of transitory income is 0.5 that of permanent income, the
propensity to consume nondurables out of permanent income is 0.6, and there is no expenditure
on durables. What would be the value of the multiplier derived from a naive regression of
consumption on income, and what would be the true value?

9.7 In his definition of permanent consumption, Friedman includes the consumption of services
provided by durables. Purchases of durables are classified as a form of saving. In an economy
similar to that in Exercise 9.6, the variance of transitory income is 0.5 that of permanent
income, the propensity to consume nondurables out of permanent income is 0.6, and half of
current saving (actual income minus expenditure on nondurables) takes the form of expenditure
on durables. What would be the value of the multiplier derived from a naive regression of
consumption on income, and what would be the true value?

9.4 Instrumental Variables

What can be done about measurement errors? If the measurement errors are due to inaccuracy in the
recording of the data, not much. If they arise because the variable being measured is conceptually
different from the true variable in the relationship, the obvious answer is to attempt to obtain more
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appropriate data. Often, however, this is not possible. In the case of Friedman's Permanent Income
Hypothesis, there is no way of obtaining data directly on permanent income since it is a subjective
concept. Sometimes the problem can be sidestepped. Friedman's own approach will be discussed in
Section 12.3. Another technique, known as instrumental variables (IV), will be discussed here. 1V is
a major variation on OLS and it will be of great importance when we come to the fitting of models
comprising several simultaneous equations.

Essentially IV consists of semi-replacing a defective explanatory variable with one that is not
correlated with the disturbance term. The discussion will be confined to the simple regression case

Yi=Bi+ BXi +u (9.33)

and we shall suppose that for some reason X; has a random component that depends on u;. A
straightforward OLS regression of Y on X would then lead to inconsistent estimates of the parameters.

Suppose, however, that we can think of another variable Z that is correlated with X but not
correlated with u. We shall show that the instrumental variables estimator of f3,, defined as

;v _ Cov(Z,Y) (9.34)
Cov(Z,X)

is consistent, provided that oy, the population covariance of Z and X, is nonzero.

Before doing this, it is instructive to compare b)’ with the OLS estimator, which will be denoted

OLS
bOs .

bOLS _ COV(X,Y) _ COV(X,Y)

— - 9.35
: Var(X) Cov(X,X) ©-35)

since Cov(X, X) and Var(X) are the same thing. The IV estimator, in simple regression analysis, is
obtained by substituting the instrument Z for the X in the numerator and for one X (but not both) in the
denominator.

Substituting for ¥ from (9.33), we can expand the expression for b, :

bV _ Cov(Z,Y) Cov(Z,[B, + B,X +ul)
> Cov(Z,X) Cov(Z, X)
_ Cov(Z,B,)+Cov(Z, B,X)+ Cov(Z,u)
B Cov(Z, X)
Cov(Z,u)
Cov(Z,X)

(9.36)

=P, +

since Cov(Z,f3,) is 0 (B, being a constant), and Cov(Z, 3,X) is equal to 3, Cov(Z, X).
We can see therefore that the instrumental variable estimator is equal to the true value plus an
error term Cov(Z, u)/Cov(Z, X). In large samples, the error term will vanish, for
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plimCov(Z,) g 0 _p 9.37)

limb," =B, + -
plimb,” =P plim Cov(Z, X) O

provided that we are correct in supposing that Z is distributed independently of u. Hence in large

samples b,' will tend to the true value f3,.
Nothing much can be said about the distribution of b;v in small samples, but as n increases, the

distribution will converge on a normal one with mean [3, and variance & L given by
2

2
o 1
O =—X— (9.38)
3 2 2
noy Iy

where rxz is the sample correlation between X and Z.
Compare this with the variance of the OLS estimator:

2
(e
G;?Ls S —u (9.39)

2
noy

The difference is that the variance of b, is multiplied by the factor 1/r5,. The greater the correlation

between X and Z, the smaller will be this factor, and hence the smaller will be the variance of b;v .

We are now in a position to state the three requirements of an instrument:

1. It should be correlated with the variable being instrumented, and the higher the correlation,

the better, provided that the second requirement is satisfied.

2. It should not be correlated with the disturbance term. If it is stochastic, its random

component should be distributed independently of the disturbance term. Otherwise plim
Cov(Z, u) in (9.37) will not be 0. Thus it would not be desirable to use an instrument that is
perfectly correlated with X, even if you could find one, because then it would automatically
be correlated with u as well and you would still obtain inconsistent estimates.

3. It should not be an explanatory variable in its own right.

What should you so if you cannot find an instrumental variable highly correlated with X? Well,
you may wish to stick with OLS after all. If, for example, your criterion for selecting an estimator is
its mean square error, you may find that the OLS estimator is preferable to an IV estimator, despite the
bias, because its variance is smaller.

Example: Use of IV to Fit the Friedman Consumption Function

The pioneering use of IV in the context of the Friedman permanent income hypothesis is Liviatan
(1963). Liviatan had data on the consumption and income of the same 883 households for two
consecutive years. We will denote consumption and income in the first year C; and Y, and in the
second year C; and Y.

Liviatan observed that if Friedman's theory is correct, Y, can act as an instrument for Y.
Obviously it is likely to be highly correlated with Y3, so the first requirement of a good instrument is
satisfied. If the transitory component of measured income is uncorrelated from one year to the next, as
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hypothesized by Friedman, Y, will be uncorrelated with the disturbance term in the relationship
between C; and Y;, and so the second condition is satisfied. Finally, C; is likely to be related to Y,
rather than Y», so the third condition is satisfied. The instrumental variable estimator is then given by

v Cov(Y,,C)) (9.40)
Cov(Y,.Y))
Alternatively, one could use C, as an instrument for Y;. It will be highly correlated with Y,, and
therefore with Y, and also not correlated with the disturbance term in the relationship between C; and
Y, if, as Friedman hypothesized, the transitory components of consumption are uncorrelated.
Similarly one could run regressions using the data for year 2, using Y; and C; as instruments for
Y,. Liviatan tried all four combinations, separating his sample into employees and self-employed. He
found that four of the estimates of the marginal propensity to consume were significantly greater than
those obtained by straightforward OLS at the 1 percent level; one was significantly greater at the 5
percent level, and in the other three cases the difference was not significant, evidence that on the
whole corroborates the permanent income hypothesis. However, the marginal propensity to consume
was generally not as high as the average propensities; therefore, his results did not support the
hypothesis of a unit elasticity of consumption with respect to permanent income, which is implicit in
equation (9.25).

Example: Use of IV to Fit an Earnings Function

In some data sets up to 10 percent of the variance of measured years of schooling is thought to be
attributable to measurement error. Accordingly, the coefficient of schooling in an earnings function
may be underestimated. The regression output gives first the output from an OLS regression of the
logarithm of hourly earnings on years of schooling and the ASVABC score, and then the output from
an IV regression with mother's years of schooling used as an instrument for years of schooling. SM is
likely to be a suitable instrument because it is correlated with S, unlikely to be correlated with the
disturbance term, and unlikely to be a direct determinant of earnings.

. reg LGEARN S ASVABC

Source | Ss at MS Number of obs = 570
————————— R e e TR F( 2, 567) =  57.45
Model | 25.9166749 2 12.9583374 Prob > F = 0.0000
Residual | 127.885218 567 .225547121 R-squared = 0.1685
————————— e Adj R-squared = 0.1656
Total | 153.801893 569 .270302096 Root MSE = .47492
LGEARN | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ o
S | .0544266 .0099018 5.497  0.000 .034978 .0738753
ASVABC | .0114733 .0026476 4.333  0.000 .0062729 .0166736
_cons | 1.118832 .124107 9.015  0.000 .8750665 1.362598
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ivreg LGEARN ASVABC (S=SM)

Instrumental variables (2SLS) regression

Source | Ss at MS Number of obs = 570
————————— oo F( 2, 567) =  41.48
Model | 15.5448371 2 7.77241854 Prob > F = 0.0000
Residual | 138.257056 567 .243839604 R-squared = 0.1011
————————— e Adj R-squared = 0.0979
Total | 153.801893 569 .270302096 Root MSE = .4938
LGEARN | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o o o oo o e e e emolo -
S | .121573 .0564962 2.152 0.032 .0106057 .2325403
ASVABC | .0010966 .0090152 0.122 0.903 -.0166106 .0188039
_cons | .7313408 .3455687 2.116 0.035 .0525898 1.410092
Instrumented: S
Instruments: ASVABC SM

The coefficient of schooling is much larger in the IV regression, suggesting that measurement
error may have led to a downwards bias in its coefficient in the OLS regression. However, note that
its standard error is also much larger than in the OLS regression. This is because the correlation
between S and SM, 0.36, is not very high. It is possible that the difference in the OLS and IV
estimates of the coefficient may be due to chance. We will improve the IV estimation by drawing on a
group of family background variables, instead of just SM, to instrument for S, and then we will
perform a formal test of the difference in the coefficients.

First, however, some practical notes. The example used here is a multiple regression model, and
you should be aware that the expressions for IV coefficients in a multiple regression model are more
complex than those in a simple regression model, in the same way that OLS multiple regression
coefficients are more complex than OLS simple regression coefficients. However, the expressions are
straightforward in a treatment using matrix algebra. A facility for performing IV regressions is a
standard feature of all regression applications. A typical procedure is to state the variables for the
regression in the usual way and append a list of non-instrumented variables and instrument(s) in
parentheses. The output above used version 6 of Stata, which departs from this convention in two
ways. The command for IV regressions is different from that for OLS regressions (“ivreg” instead
of “reg”), and the list of variables in parentheses is in the form of an equation with the instrumented
variable(s) to the left of the = sign and the instruments to the right of it.

Multiple Instruments

Father's years of schooling, number of siblings, and possession of a library card are other factors that
may be associated with years of schooling of the respondent but are not likely to be direct
determinants of earnings. Thus we have four potential instruments for S and, for reasons that will be
explained in the next chapter, IV estimation is more efficient if they are used as a group rather than
individually. To do this, you include all of them in the list of instruments in the regression command.
The corresponding regression output is shown below.
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ivreg LGEARN ASVABC (S=SM SF SIBLINGS LIBRARY)

Instrumental variables (2SLS) regression

Source | Ss at MS Number of obs = 570
————————— s mmm s mmm—m e mm—m—m— o F( 2, 567) = 43.58
Model | 20.3209223 2 10.1604612 Prob > F = 0.0000
Residual | 133.48097 567 .235416173 R-squared = 0.1321
————————— e Adj R-squared = 0.1291
Total | 153.801893 569 .270302096 Root MSE = .4852
LGEARN | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o o o oo o e e e emolo -
S | .1037467 .0422673 2.455 0.014 .0207272 .1867663
ASVABC | .0038515 .0068948 0.559 0.577 -.009691 .0173939
_cons | .8342134 .2686343 3.105 0.002 .3065736 1.361853
Instrumented: S
Instruments: ASVABC SM SF SIBLINGS LIBRARY

The smaller standard error indicates that there has been a modest gain in efficiency, but it is still
much larger than that for the original OLS regression and it is possible that the difference in the OLS
and IV estimates of the coefficient of S is purely random. We will perform a formal test.

The Durbin—-Wu-Hausman Specification Test

Most economic data are subject to some element of measurement error and a recurring issue, as in the
present case, is whether it is potentially serious enough to require the use of IV instead of OLS to fit a
model. It has been shown that if measurement error is serious, OLS estimates will be inconsistent and
IV is to be preferred. However, if there is no measurement error, both OLS and IV will be consistent
and OLS will be preferred because it is more efficient. The Durbin—Wu—Hausman specification test
(sometimes described as the Hausman test: the standard reference is Hausman(1978), but Durbin
(1954) and Wu (1973) made important contributions to its development) can be used in this context to
discriminate between the two possibilities. We will assume that the regression model is given by

Y=B+BXo+ ... + BXi+u (9.41)

where one or more of the explanatory variables are potentially subject to measurement error. Under
the null hypothesis that there is no measurement error, the OLS and IV coefficients will not be
systematically different. The test statistic is based on the differences between the OLS and IV
coefficients (all of them, not just those of the variables potentially subject to measurement error) and it
has a chi-squared distribution with degrees of freedom equal to the number of instrumented variables
under the null hypothesis of no significant difference. Its computation is too complex to be
reproduced here and you would be well-advised to employ a regression application such as Stata
version 6 or EViews version 3 that will do it for you.

We will perform the test for the earnings function example using Stata. We first run the IV
regression of the logarithm of earnings on the ASVABC score, dummy variables for male sex and
black and hispanic ethnicity, and years of schooling instrumented with multiple instruments: mother’s
and father’s years of schooling, number of siblings, and a dummy variable equal to 1 if anyone in the
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family possessed a library card, O otherwise, when the respondent was 14. After this we give the
command "hausman, save". We then run the corresponding OLS regression and follow with the

command "hausman, constant sigmamore". This produces the following output:

ivreg LGEARN ASVABC MALE ETHBLACK ETHHISP (S=SM SF SIBLINGS LIBRARY)

Instrumental variables (2SLS) regression

Source | SS af MS Number of obs = 570
————————— o m s s m e m e mm e m e mm e m—m - F( 5, 564) = 23.49
Model | 29.1540126 5 5.83080252 Prob > F = 0.0000
Residual | 124.64788 564 .22100688 R-squared = 0.1896
————————— B e Adj R-squared = 0.1824
Total | 153.801893 569 .270302096 Root MSE = .47011
LGEARN | Coef. Std. Err. t P>t [95% Conf. Intervall
_________ o o o e
S | .1026815 .0381431 2.692 0.007 .0277615 .1776014
ASVABC | .0025508 .0067323 0.379 0.705 -.0106727 .0157743
MALE | .2280404 .0422514 5.397 0.000 .145051 .3110298
ETHBLACK | -.15289 .0882356 -1.733 0.084 -.3262005 .0204204
ETHHISP | .0463734 .085714 0.541 0.589 -.1219842 .214731
_cons | .7939315  .2347929 3.381  0.001 .3327562 1.255107
Instrumented: S
Instruments: ASVABC MALE ETHBLACK ETHHISP SM SF SIBLINGS LIBRARY
hausman, save
reg LGEARN S ASVABC MALE ETHBLACK ETHHISP
Source | SS af MS Number of obs = 570
————————— o m s s m e m e mm e m e mm e m—m - F( 5, 564) = 30.63
Model | 32.8416113 5 6.56832227 Prob > F = 0.0000
Residual | 120.960281 564 .214468584 R-squared = 0.2135
————————— B e Adj R-squared = 0.2066
Total | 153.801893 569 .270302096 Root MSE = .46311
LGEARN | Coef. std. Err. t P>|t] [95% Conf. Interval]
_________ o o
S | .0618848 .0098386 6.290 0.000 .04256 .0812097
ASVABC | .0093287 .0027721 3.365 0.001 .0038838 .0147737
MALE | .2130222 .0394229 5.404 0.000 .1355886 .2904557
ETHBLACK | -.1019355 .0741871 -1.374 0.170 -.2476523 .0437813
ETHHISP | .0537519 .0841815 0.639 0.523 -.1115956 .2190993
_cons | 1.009459 .1295912 7.790 0.000 .7549185 1.263999

hausman, constant sigmamore

---- Coefficients ----
| (b) (B) (b-B)  sqgrt(diag(V_b-V_B))
| Prior Current Difference S.E.
_________ o o o o e demeoo
S | .1026815 .0618848 .0407967 .0362637
ASVABC | .0025508 .0093287 -.0067779 .0060248
MALE | .2280404 .2130222 .0150182 .0133495
ETHBLACK | -.15289 -.1019355 -.0509546 .045293
ETHHISP | .0463734 .0537519 -.0073784 .0065586
_cons | .7939315 1.009459 -.2155273 .1915801
_________ o o e
b = less efficient estimates obtained previously from ivreg.
B = more efficient estimates obtained from regress.
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Test: Ho: difference in coefficients not systematic
chi2 (1) (b-B) ' [(V_b-V_B)"*(-1)] (b-B)
1.27
0.2606

Prob>chi2

The chi-squared statistic is 1.27, lower than 3.84, the critical value of chi-squared at the 5 percent
significance level, and so we do not reject the null hypothesis of no difference in the OLS and IV
estimates. We infer that it is safe to use OLS rather than IV, and we are happy to do so because the
OLS standard errors, particularly those of the coefficients of S and ASVABC, are smaller than their IV
counterparts. This is likely to be the correct conclusion. The schooling histories are recorded in great
detail in the NLSY data set and accordingly the measurement error is almost certainly minimal.

The Hausman test can be used in any comparison of OLS and IV estimators where both are
consistent, but OLS more efficient, under a null hypothesis, and OLS in inconsistent under the
alternative hypothesis. We will encounter another application in the next chapter. With the usage of
the test becoming more common, a facility for performing it is becoming a standard feature of
regression applications.

Exercises

9.8 In Exercise 9.1, the amount of labor, L, employed by the firms is also a linear function of
expected sales:

L:61+62Xe.

Explain how this relationship might be exploited by the investigator to counter the problem of
measurement error bias.

9.9* It is possible that the ASVABC test score is a poor measure of the kind of ability relevant for
earnings. Accordingly, perform an OLS regression of the logarithm of hourly earnings on years
of schooling and the ASVABC score using your EAEF data set and an IV regression using SM,
SF, SIBLINGS, and LIBRARY as instruments for ASVABC. Perform a Durbin—-Wu-Hausman
test to evaluate whether ASVABC appears to be subject to measurement error.

9.10* What is the difference between an instrumental variable and a proxy variable (as described in
Section 7.4)? When would you use one and when would you use the other?
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SIMULTANEOUS EQUATIONS
ESTIMATION

If you employ OLS to estimate the parameters of an equation that is embedded in a simultaneous
equations model, it is likely that the estimates will be biased and inconsistent and that the statistical
tests will be invalid. This is demonstrated in the first part of this chapter. The second part discusses
how these problems may be overcome by using instrumental variables estimation.

10.1 Simultaneous Equations Models: Structural and Reduced Form Equations

Measurement error is not the only possible reason why the fourth Gauss—Markov condition may not be
satisfied. Simultaneous equations bias is another, and it is best explained with an example.

Suppose that you are investigating the determinants of price inflation and wage inflation. We will
start with a very simple model that supposes that p, the annual rate of growth of prices, is related to w,
the annual rate of growth of wages, it being hypothesized that increases in wage costs force prices
upwards:

p=Bi+Bw+u, (10.1)

At the same time w is related to p and U, the rate of unemployment, workers protecting their real
wages by demanding increases in wages as prices rise, but their ability to do so being the weaker, the
higher the rate of unemployment (05 < 0):

w=01+ 0pp + U+ u, (102)

u, and u,, are disturbance terms.

By its very specification, this simultaneous equations model involves a certain amount of
circularity: w determines p in the first equation, and in turn p helps to determine w in the second. To
cut through the circularity we need to make a distinction between endogenous and exogenous
variables. Endo- and exo- are Greek prefixes that mean within and outside, respectively. Endogenous
variables are variables whose values are determined by the interaction of the relationships in the
model. Exogenous ones are those whose values are determined externally. Thus in the present case p
and w are both endogenous and U is exogenous. The exogenous variables and the disturbance terms
ultimately determine the values of the endogenous variables, once one has cut through the circularity.
The mathematical relationships expressing the endogenous variables in terms of the exogenous
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SIMULTANEOUS EQUATIONS ESTIMATION 2

variables and disturbance terms are known as the reduced form equations. The original equations that
we wrote down when specifying the model are described as the structural equations. We will derive
the reduced form equations for p and w. To obtain that for p, we take the structural equation for p and
substitute for w from the second equation:

p=B+pBw+u,

=B+ B(ou + oop + osU + u,) + u, (10.3)
Hence
(1 —B)p =P+ ouf+ osU + u, + Pou, (10.4)
and so
_ B, +a,B, +os U +u, + Bou, (10.5)
1-a,p,
Similarly we obtain the reduced form equation for w:
w =04+ opp+ osU + u,,
= oy + B+ Bw +u,) + 05U + u, (10.6)
Hence
(1 - ofoyw =y + uf + U + u, + ouu, (10.7)
and so
W:a‘ to, B, +oU +u, +o,u, (108)
1-a,p,
Exercise

10.1* A simple macroeconomic model consists of a consumption function and an income identity:
C= ﬁ] + ﬁzY +u
Y=C+1,

where C is aggregate consumption, / is aggregate investment, Y is aggregate income, and u is a
disturbance term. On the assumption that / is exogenous, derive the reduced form equations for
Cand?Y.
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10.2 Simultaneous Equations Bias

In many (but by no means all) simultaneous equations models, the reduced form equations express the
endogenous variables in terms of all of the exogenous variables and all of the disturbance terms. You
can see that this is the case with the price inflation/wage inflation model. In this model, there is only
one exogenous variable, U. w depends on it directly; p does not depend it directly but does so
indirectly because it is determined by w. Similarly, both p and w depend on u,, p directly and w
indirectly. And both depend on u,, w directly and p indirectly.

The dependence of w on u, means that OLS would yield inconsistent estimates if used to fit
equation (10.1), the structural equation for p. w is a stochastic regressor and its random component is
not distributed independently of the disturbance term u,. Similarly the dependence of p on u,, means
that OLS would yield inconsistent estimates if used to fit (10.2). Since (10.1) is a simple regression

equation, it is easy to analyze the large-sample bias in the OLS estimator of 3, and we will do so.

OLS

After writing down the expression for b, ~, the first step, as usual, is to substitute for p. Here we

have to make a decision. We now have two equations for p, the structural equation (10.1) and the
reduced form equation (10.5). Ultimately it does not matter which we use, but the algebra is a little

more straightforward if we use the structural equation because the expression for bZOLS decomposes

immediately into the true value and the error term. We can then concentrate on the error term.

pOLS — Cov(p,w) _Cov([B, +B,w+u,lw)
o = =

Var(w) Var(w) (10.9)
B Cov(B,,w) +Cov(B,w,w) +Cov(u,,,w) _g4 Cov(u,,w) '
B Var(w) B Var(w)

The error term is a nonlinear function of both u, and u,, (remember that w depends on both) and it
is not possible to obtain an analytical expression for its expected value. Instead we will investigate its
probability limit, using the rule that the probability limit of a ratio is equal to the probability limit of
the numerator divided by the probability limit of the denominator, provided that both exist. We will
first focus on plim Cov(u,, w). We need to substitute for w and again have two choices, the structural
equation (10.2) and the reduced form equation (10.8). We choose (10.8) because (10.2) would
reintroduce p and we would find ourselves going round in circles.

: : 1
plim Cov(u ,,w) = plim Cov(u e

— (a1+a2ﬂl+a3U+uw+a2up))
22

. . (10.10)
1 plim Cov(u ,,[0, + 0, B,]) + a;plim Cov(u,,U)
1-a,B,| +plim Cov(u,,u,,)+o,plim Cov(u ,,u,)

Cov(u,, [0 + oufi]) is O since [0y + oufi] is a constant. plim Cov(u,, U) will be 0 if U is truly
exogenous, as we have assumed. plim Cov(u,, u,) will be 0 provided that the disturbance terms in the
structural equations are independent. But plim Cov(u,, u,) is nonzero because it is plim Var(x,) and

the limiting value of the sample variance of u, is its population variance, G,f . Hence
P
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2

0,0,
plimCOV(Mp,W)=ﬁ (10.11)
—UP0;
Now for plim Var(w):
+ o U+u, +o,u
plim Var(w) = plim Var| o + 0Py + 2p
1-a,p, 1-a,f, (10.12)
) o U+u, +o,u, '
= plim Var|
1- o, ﬁz
o+
since I—Zﬂl is an additive constant. So
1- o, [))2
| plim Var(a;U) + plim Var(u,,) + plim Var(a,u , )
plim Var(w) = m + 2plim Cov(a;U, u,,) + 2plim Cov(os U, 0tyu ) (10.13)
BN ag)

+ 2plim Cov(u

wo aZM P )

Now if U, u, and u, are independently distributed, the limiting values of the three covariance
terms are 0. The limiting values of the variance terms are the corresponding population variances.
Hence

plim Var(w) =;2(a3265 +0, +a220§,) (10.14)
(l_azﬂz) !

Thus

2

(10.15)
o0, +0, +a2205p

0,0

plimbzoLs =B, +(-0,[,)

and so by"™® is an inconsistent estimator of 3.

The direction of simultaneous equations bias depends on the structure of the model being fitted.
Can one say anything about it in this case? Variances are always positive, if not 0, so it depends on
the sign of (1 — ;). Looking at the reduced form equation (10.8), it is reasonable to suppose that w
will be negatively influenced by U. Since it is also reasonable to suppose that ¢ is negative, one may
infer that (1 — ouf3,) is positive. Actually, this is a condition for equilibrium in this model. Consider
the effect of a change AU in U. In view of (10.2), its immediate effect is to change w, in the opposite
direction, by an amount ogAU. Looking at (10.1), this in turn changes p by an amount o5B,AU.
Returning to (10.2), this causes a secondary change in w of c,05,AU, and hence, returning to (10.1),

a secondary change in p equal to o,0, ﬁf AU. Returning again to (10.2), this causes a further change

in w equal to ;a3 8; AU. The total change in w will therefore be

Aw = (1+a,B, +0; By +a; B; +..)a; AU (10.16)
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and this will be finite only if opf, < 1.

A Monte Carlo Experiment

This section reports on a Monte Carlo experiment that investigates the performance of OLS and, later,
IV when fitting the price inflation equation in the price inflation/wage inflation model. Numerical
values were assigned to the parameters of the equations as follows:

p=15+05w+u, (10.17)
w=2.5+0.5p—0.4U + u, (10.18)

U was assigned the values 2, 2.25, increasing by steps of 0.25 to 6.75. u, was generated as a normal
random variable with 0 mean and unit variance, scaled by a factor 0.8. The disturbance term u,, is not
responsible for bias when OLS is used to fit the price inflation equation and so, to keep things simple,

it was suppressed. Each replication of the experiment used a sample of 20 observations. Using the

expression derived above, plim bZOLS is equal to 0.87 when the price inflation equation is fitted with

OLS. The experiment was replicated 10 times with the results shown in the Table 10.1.

It is evident that the estimates are heavily biased. Every estimate of the slope coefficient is above
the true value of 0.5, and every estimate of the intercept is below the true value of 1.5. The mean of
the slope coefficients is 0.96, not far from the theoretical plim for the OLS estimate. Figure 10.1
shows how the bias arises. The hollow circles show what the relationship between p and w would
look like in the absence of the disturbance terms, for 20 observations. The disturbance term u, alters
the values of both p and w in each observation when it is introduced. As can be seen from the reduced
form equations, it increases p by an amount u,/(1 — of3;) and w by an amount oou,/(1 — oof3). 1t
follows that the shift is along a line with slope 1/0;,. The solid circles are the actual observations, after
u, has been introduced. The shift line has been drawn for each observation. As can be seen, the
overall effect is to skew the pattern of observations, with the result that the OLS slope coefficient is a
compromise between the slope of the true relationship, 3, and the slope of the shift lines, 1/0,. This
can be demonstrated mathematically be rewriting equation (10.15):

TaBLE 10.1
Sample a s.e.(a) b s.e.(b)
1 0.36 0.39 1.11 0.22
2 0.45 0.38 1.06 0.17
3 0.65 0.27 0.94 0.12
4 0.41 0.39 0.98 0.19
5 0.92 0.46 0.77 0.22
6 0.26 0.35 1.09 0.16
7 0.31 0.39 1.00 0.19
8 1.06 0.38 0.82 0.16
9 -0.08 0.36 1.16 0.18
10 1.12 0.43 0.69 0.20
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Figure 10.1
2
aZO-uI,

PlimbgLS =B, +(0-a,f,)

0;06, +0. +0,;0;
,

2 .2
1 \ aZO-up
=B+l —-b 5 (10.19)
o, Ja3 oy +o, +t0,0,
2.2 2 2 2
_p ;0 +0, +L o0,
=B, _

0;06, +0) +0;0 o, | ajo] +06. +a;0)]
w w P

M,)

plim bf "5 is thus a weighted average of 8, and 1/a, the bias being proportional to the variance of Uup,.

Exercises

10.2* In the simple macroeconomic model
C=B+BY+u
Y=C+1,
described in Exercise 10.1, demonstrate that OLS would yield inconsistent results if used to fit

the consumption function, and investigate the direction of the bias in the slope coefficient.

10.3 A researcher is investigating the impact of advertising on sales using cross-section data from
firms producing recreational goods. For each firm there are data on sales, S, and expenditure on
advertising, A, both measured in suitable units, for a recent year. The researcher proposes the
following model:
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S:ﬁ1+ﬁzA+MS

A=0q+ S + uy

where us and u4 are disturbance terms. The first relationship reflects the positive effect of
advertising on sales, and the second the fact that largest firms, as measured by sales, tend to
spend most on advertising. Give a mathematical analysis of what would happen if the
researcher tried to fit the model using OLS.

10.3 Instrumental Variables Estimation

As we saw in the discussion of measurement error, the instrumental variables approach may offer a
solution to the problems caused by a violation of the fourth Gauss—Markov condition. In the present
case, when we fit the structural equation for p, the fourth Gauss—Markov condition is violated because
w is not distributed independently of u,. We need a variable that is correlated with w but not with u,,
and does not already appear in the equation in its own right. The reduced form equation for w gave us
some bad news — it revealed that w was dependent on u,. But it also gives us some good news — it
shows that w is correlated with U, which is exogenous and thus independent of u,. So we can fit the
equation using U as an instrument for w. Recalling that, for simple regression analysis, the
instrumental variables estimator of the slope coefficient is given by the covariance of the instrument
with the dependent variable divided by the covariance of the instrument with the explanatory variable,
the IV estimator of 3, is given by

w _ Cov(U, p)

= 10.20
> Cov(U,w) (1020
We will demonstrate that it is consistent. Substituting from the structural equation for p,
v Cov(U,[B, + Byw+u,]) _ Cov([U, B,) + Cov(U, B,w) + Cov(U,u )
g Cov(U,w) Cov(U,w)
(10.21)
Cov(U,u p)
=Byt
Cov(U,w)

since the first covariance in the numerator is 0 and the second is equal to B,Cov(U, w). Now plim
Cov(U, u,) is 0 if U is exogenous and so distributed independently of u,. plim Cov(U, w) is nonzero
because U is a determinant of w. Hence the instrumental variable estimator is a consistent estimate of
Bo.

Table 10.2 shows the results when IV is used to fit the model described in Section 10.2. In
contrast to the OLS estimates, the IV estimates are distributed around the true values, the mean of the
estimates of the slope coefficient (true value 0.5) being 0.37 and of those of the intercept (true value
1.5) being 1.69. There is no point in comparing the standard errors using the two approaches. Those
for OLS may appear to be slightly smaller, but the simultaneous equations bias renders them invalid.
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TaBLE 10.2
OLS v
Sample bl S.e.(bl) bz S.e.(bz) b] S.e.(bl) b2 S.e.(bz)
1 0.36 0.39 1.11 0.22 2.33 0.97 0.16 0.45
2 0.45 0.38 1.06 0.17 1.53 0.57 0.53 0.26
3 0.65 0.27 0.94 0.12 1.13 0.32 0.70 0.15
4 0.41 0.39 0.98 0.19 1.55 0.59 0.37 0.30
5 0.92 0.46 0.77 0.22 2.31 0.71 0.06 0.35
6 0.26 0.35 1.09 0.16 1.24 0.52 0.59 0.25
7 0.31 0.39 1.00 0.19 1.52 0.62 0.33 0.32
8 1.06 0.38 0.82 0.16 1.95 0.51 0.41 0.22
9 -0.08 0.36 1.16 0.18 1.11 0.62 0.45 0.33
10 1.12 0.43 0.69 0.20 2.26 0.61 0.13 0.29

In this example, IV definitely gave better results than OLS, but that outcome was not inevitable.
In Table 10.2 the distribution of the OLS estimates of the slope coefficient is more concentrated than
that of the IV estimates. The standard deviation of the estimates (calculated directly from the
estimates, ignoring the standard errors) is 0.15. For the IV estimates it is 0.20. So if the bias had been
smaller, it is possible that OLS might have yielded superior estimates according to a criterion like the
mean square error that allows a trade-off between bias and variance.

Underidentification

If OLS were used to fit the wage inflation equation
w=o04+ opp + U+ u, (10.22)

the estimates would be subject to simultaneous equations bias caused by the (indirect) dependence of p
on u,. However, in this case it is not possible to use the instrumental variables approach to obtain
consistent estimates, and the relationship is said to be underidentified. The only determinant of p,
apart from the disturbance terms, is U, and it is already in the model in its own right. An attempt to
use it as an instrument for p would lead to a form of exact multicollinearity and it would be impossible
to obtain estimates of the parameters. Using the expression in the box, we would have

aV = Cov(Z,w)Var(U) — Cov(U,w)Cov(Z,U)
Cov(Z, p)Var(U) — Cov(p,U)Cov(Z,U)

_ Cov(U,w)Var(U) —Cov(U,w)Cov(U,U)

" Cov(U, p)Var(U) - Cov(p,U)Cov(U,U)

(10.23)

and the numerator and denominator both reduce to O.
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Instrumental Variables Estimation in a Model with Two Explanatory Variables

Suppose that the true model is
Y:ﬁ1+[))2X2+[))3X3+M

that X; is not distributed independently of u, and that Z is being used as an instrument for
X,. Then the IV estimators of 3, and f3; are given by

bV _ Cov(Z,Y)Var(X;)—Cov(X;,Y)Cov(Z,X ;)
Cov(Z,X,)Var(X;)—Cov(X,, X;)Cov(Z, X;)

W o_ Cov(X;,Y)Cov(Z,X,)—Cov(Z,Y)Cov(X,, X5)
> Cov(Z,X,)Var(X5)—Cov(X,, X,)Cov(Z, X5)

However, suppose that the rate of price inflation were hypothesized to be determined by the rate
of growth of the money supply, m, as well as the rate of growth of wages, and that m were assumed to
be exogenous:

p =P+ Bw+ Bsm+u, (10.24)

The reduced form equations become

_ Byt By +asfU + Bsm+uy, + Bou,
1-a,p,

(10.25)

oy + 0, B +osU + o, Bym+u, +onu,
1-o,B,

(10.26)

U may be used as an instrument for w in the price inflation equation, as before, and m can be used as
an instrument for p in the wage inflation equation because it satisfies the three conditions required of
an instrument. It is correlated with p, by virtue of being a determinant; it is not correlated with the
disturbance term, by virtue of being assumed to be exogenous; and it is not already in the structural
equation in its own right. Both structural equations are now said to be exactly identified, exact
identification meaning that the number of exogenous variables available as instruments (that is, not
already in the equation in their own right) is equal to the number of endogenous variables requiring
instruments.
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Overidentification and Two-Stage Least Squares
Next consider the model
p=pi+Bw+u, (10.27)
w=aoy+ op + ozU + oux + u,, (10.28)

where x is the rate of growth of productivity. The corresponding reduced form equations are

_BiroyBy+as U +oy Byx+u, + Bou,
1-a,p,

(10.29)

o, o, B +oU+oyx+u, +onu,
1-a,f,

w (10.30)

The wage equation is underidentified because there is no exogenous variable available to act as an
instrument for p. p is correlated with both U and x, but both these variables appear in the wage
equation in their own right.

However the price inflation equation is now said to be overidentified because we have two
potential instruments for w. We could use U as an instrument for w, as before:

pV = Cov(U, p)

= 10.31
> Cov(U,w) (10301
Alternatively, we could use x as an instrument:
by = Cov(x, p) (10.32)

Cov(x,w)

Both are consistent estimators, so they would converge to the true value, and therefore to each
other, as the sample size became large, but for finite samples they would give different estimates.
Suppose that you had to choose between them (you do not, as we will see). Which would you choose?
The population variance of the first is given by

2

2 G”p 1

Oy =— X —— (10.33)

P nVar(w) o},

The population variance of the second estimator is given by a similar expression with the
correlation coefficient replaced by that between w and x. We want the population variance to be as
small as possible, so we would choose the instrument with the higher correlation coefficient.
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Two-Stage Least Squares

In practice, rather than choose between the instruments in this situation, we would construct a linear
function of them and use that instead. The main reason for this is that in general a linear function,
with suitably chosen weights, will be more efficient than either instrument individually. A secondary
consideration is that using a linear function eliminates the problem of conflicting estimates. Let the
linear function be Z, where

Z:h1+h2U+h3X (1034)

How do we choose the & coefficients? Very straightforward. Using OLS, regress w on U and x,
save the fitted values, and call the saved variable Z:

Z=W=h +hU + hyx (10.35)

The fitted values are automatically linear functions of U and x and the & coefficients will have been
chosen in such a way as to maximize the correlation between the fitted values and w. As we saw in
Chapter 2, provided that the model is correctly specified and that the Gauss—Markov conditions are
satisfied, OLS yields estimates that are optimal according to three mutually-equivalent criteria:
minimizing the sum of the squares of the residuals, maximizing R’, and (the criterion that is relevant
here) maximizing the correlation between the actual and the fitted values. This is the first stage of the
Two-Stage Least Squares estimator. The second stage is the calculation of the estimate of 3, using Z

as an instrument:

pISLS — Cov(Z,p) _ COV(VY’ p) (10.36)
Cov(Z,w) Cov(w,w)

The population variance of b, " is given by

o’ —G—‘%"xi (10.37)
2 aVar(w) '

w,W

and in general this will be smaller than the population variances of the IV estimators using U or x
because the correlation coefficient will be higher.

The Order condition for Identification

We have observed that in general an equation will be identified if there are enough exogenous
variables not appearing in it to act as instruments for the endogenous variables that do appear in it. In
a fully-specified model, there will be as many equations as there are endogenous variables. Let us
suppose that there are G of each. The maximum number of endogenous variables that can appear on
the right side of an equation is G — 1 (the other is the dependent variable of that equation). In such a
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case, we would need at least G — 1 exogenous variables not appearing in the equation to have enough
instruments.

Suppose, however, that j endogenous variables are also missing from the equation. We would
then need only G — 1 —j instruments, so only G — 1 — j exogenous variables would have to be missing
from the equation. The total number of variables missing, however, remains the same: j endogenous
variables and G — 1 — j exogenous variables make a total of G — 1.

Thus we come to the general conclusion that an equation in a simultaneous equations model is
likely to be identified if G — 1 or more variables are missing from it. If exactly G — 1 are missing, it is
likely to be exactly identified, and if more than G — 1 are missing, it is likely to be overidentified,
calling for the use of TSLS.

This is known as the order condition for identification. It must be stressed that this is a necessary
condition for identification but not a sufficient one. There are cases, which we will not discuss here,
in which an equation is in fact underidentified even if the order condition is satisfied.

Unobserved Heterogeneity

In the examples above, simultaneous equations bias and instrumental variables estimation were
discussed in the context of fully-specified multi-equation models. However, it is common to find
these issues discussed in the context of a single-equation model, where the equation is implicitly
embedded in a simultaneous equations model where the other relationships are unspecified. For
example, in the case of the earnings function

LGEARN = Bi + BS + ... + u, (10.38)

it is often asserted that "unobserved heterogeneity" will cause the OLS estimate of 3, to be biased. In
this case unobserved heterogeneity refers to unobserved variations in the characteristics of the
respondents, such as ambition and various types of intelligence and ability, that influence both
educational attainment and earnings. Because they are unobserved, their influence on earnings is
captured by the disturbance term, and thus S and u are positively correlated. As a consequence, the
OLS estimate of 3, will be subject to a positive bias. If this is the case, S needs to be instrumented
with a suitable instrument.

However, it requires ingenuity to find a credible instrument, for most factors affecting educational
attainment are also likely to affect earnings. One such example is the use of proximity to a four-year
college by Card (1995), who argued that this could have a positive effect on educational attainment
but was unlikely to be a determinant of earnings.

TaBLE 10.3

OLS v

Coefficient of S 0.073 0.140
Standard error 0.004 0.055
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Table 10.3 presents the results of OLS and IV regressions using a sample of 3,010 males derived
from the National Longitudinal Survey of Young Men, a panel study that was a precursor to the
NLSY. The earnings data relate to 1976. The regressions included personal, family, and regional
characteristics not shown. As can be seen, using college proximity to instrument for educational
attainment does make a difference — but it is in a direction opposite to that expected, for if the OLS
estimate is upwards biased, the IV estimate ought to be smaller, not larger. Measurement error in S,
which would cause a downwards bias in the OLS estimate, could account for part of the perverse
effect, but not all of it. Card sought an explanation in terms of a higher-than-average return to
education for those with relatively poorly-educated parents, combined with a higher responsiveness of
educational attainment to college proximity for such respondents. However, although educational
attainment is positively correlated with college proximity, the correlation is weak and accordingly the
standard error of the IV estimate large. It is thus possible that the apparent increase occurred as a
matter of chance and that a Durbin—-Wu—Hausman test would have shown that the OLS and IV
estimates were not significantly different.

Durbin-Wu-Hausman Test

In Chapter 9 it was shown that measurement error causes a violation of the fourth Gauss—Markov
condition and that one can use the Durbin—-Wu-Hausman test, which compares the OLS and IV
coefficients, to test for suspected measurement error. The test can be used in the same way more
broadly for suspected violations of the Gauss—Markov condition and in particular for violations caused
by simultaneous equations bias. To illustrate this, we will return to the Monte Carlo experiment
described above. The regression output shows the result of performing the test for the first of the 10
replications of the experiment summarized in Table 10.2.

ivreg p (w=U)

Instrumental variables (2SLS) regression

Source | SS af MS Number of obs = 20
————————— b oo F( 1, 18) = 0.13
Model | 5.39052472 1 5.39052472 Prob > F = 0.7207
Residual | 28.1781361 18 1.565452 R-squared = 0.1606
————————— e Adj R-squared = 0.1139
Total | 33.5686608 19 1.76677162 Root MSE = 1.2512

p | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ o
wo| .1619431 .4459005 0.363 0.721 -.7748591 1.098745

cons | 2.328433 .9699764 2.401 0.027 .2905882 4.366278

Instrumented: w
Instruments: U

. hausman, save
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Indirect Least Squares

Indirect least squares (ILS), an alternative procedure for obtaining consistent estimates of
parameters in a simultaneous equations model, is no longer used in practice but it retains
some pedagogical interest. Returning to the price inflation/wage inflation model

p=Pi+pw+u,
W:al+a2p+a3U+uw,

the reduced form equations for p and w were

_Biray B, + o3 BU +u, + Bou,
1-a,p,

o, +a, B +oU +u, +osu,
1-a,p,

w

On the assumption that U is exogenous, it is independent of u, and u,, and so OLS will
give unbiased estimates of the parameters of the equations. The parameters of these
equations are of course functions of the parameters of the structural equations, but it may
be possible to derive estimates of the structural parameters from them. For example,
using the data for the first replication of the Monte Carlo experiment, the fitted reduced
form equations are

p=2.9741-0.0705U

w=3.9871-0.4352U

Hence, linking the numerical estimates to the theoretical coefficients, one has four

equations
b, +a,b b +a,b
DTG 59741 B%2 _ o705 DT 39971 9 _ 4352
1-a,b, 1-a,b, 1-a,b, 1-a,b,

Substituting the fourth equation into the second, one has —0.4352b, = —0.0705, and so

b, +ab +a,b
LT -b, e B =b,, one has b =29741 -
1—-a,b, 1—-a,b,

0.1620x3.9871 = 2.3282. There is no way of deriving estimates of the three remaining

b, = 0.1620. Further, since

parameters. Indeed, since we had four equations in five unknowns, we were lucky to pin
down two of the parameters. Since we have obtained (unique) estimates of the
parameters of the structural price equation, that equation is said to be exactly identified,
while the structural wage equation is said to be underidentified.
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Indirect Least Squares (Continued)

Next consider the model
p=PBi+Bw+u,

w=04+ op+ osU+ oux +u,

where x is the rate of growth of productivity. The corresponding reduced form equations
are

_ Bi+oyBy oy fU oy Brxtu, + Bou,
1-a,p,

o, +o, B +osU +oyx+u, +onu,
1-a,p,

w

Suppose that when these are fitted we obtain, in abstract form,
ﬁ:Bl + B,U + Bsx
vT/:Al + AU + Asx

where the B; and the A; are numerical regression coefficients. Linking these numerical
coefficients to their theoretical counterparts, we obtain six equations in six unknowns:

by +ab, _ asb, asb, B
S = Dy PR ) T . D3
1-a,b, 1-a,b, 1-a,b,

a, +a,b, _A B G _ 4
l-a,b, l—a,b, l1—ab,

Substituting the fifth equation into the second, we have A;b, = B,, and so B,/A, provides
an estimate of 3,. However, substituting the sixth equation into the third, we have A;b, =
Bs, and so Bi/Aj; also provides an estimate of f3,. Thus we have more than one way of
obtaining an estimate and the model is said to be overidentified. This is the counterpart
of having alternative instruments in IV estimation. The estimates would both be
consistent, and so in large samples they would converge to the true value, but in finite
samples they would differ. One would also be able to obtain conflicting estimates of c.
However it would not be possible to obtain estimates of the remaining parameters and the
wage equation is said to be underidentified.

ILS has no advantages over IV and has the disadvantage of requiring more
computation. If an equation is underidentified for IV, it is underidentified for ILS; if it
exactly identified, IV and ILS yield identical estimates; if it is overidentified, ILS yields
conflicting estimates, a problem that is resolved with IV by using TSLS.
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reg p w
Source | Ss at MS Number of obs = 20
————————— i mmm e e e F( 1, 18) = 26.16
Model | 19.8854938 1 19.8854938 Prob > F = 0.0001
Residual | 13.683167 18 .760175945 R-squared = 0.5924
————————— e Adj R-squared = 0.5697
Total | 33.5686608 19 1.76677162 Root MSE = .87188
p | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o e
w | 1.107448 .2165271 5.115 0.000 .6525417 1.562355
_cons | .3590688 .4913327 0.731 0.474 -.673183 1.391321
hausman, constant sigmamore
---- Coefficients ----
| (b) (B) (b-B)  sqgrt(diag(V_b-V_B))
| Prior o9nb Current
Difference S.E.
_________ o o o oo o e e el
wo| .1619431 1.107448 -.9455052 .2228577
_cons | 2.328433 .3590688 1.969364 .4641836
_________ o o o
b = less efficient estimates obtained previously from ivreg.
B = more efficient estimates obtained from regress.

Test: Ho: difference in coefficients not systematic

chi2( 1) = (b-B)'[(V_b-V_B)"*(-1)] (b-B)
= 18.00
Prob>chi2 = 0.0000

Under the null hypothesis that there is no simultaneous equations bias, both OLS and IV will be
consistent estimators, but OLS will be more efficient. Under the alternative hypothesis, OLS will be
inconsistent. As can be seen from the output, the chi-squared statistic summarizing the differences in
the coefficients is 18.0. The critical value of chi-squared with one degree of freedom at the 0.1
percent level is 10.83, and hence we reject the null hypothesis. Of course, this was a foregone
conclusion since the Monte Carlo experiment involved a simultaneous equations model designed to
demonstrate that OLS would yield inconsistent estimates.

Exercises

10.4* The table gives consumption per capita, cpop, gross fixed capital formation per capita, gfcfpop,
and gross domestic product per capita, gdppop, all measured in U.S.$, for 33 countries in 1998.
The output from an OLS regression of cpop on gdppop, and an IV regression using gfcfpop as
an instrument for gdppop, are shown. Comment on the differences in the results.
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10.5

C 1 Y C 1 Y
Australia 15024 4749 19461 South Korea 4596 1448 6829
Austria 19813 6787 26104 Luxembourg 26400 9767 42650
Belgium 18367 5174 24522 Malaysia 1683 873 3268
Canada 15786 4017 20085 Mexico 3359 1056 4328
China-PR 446 293 768 Netherlands 17558 4865 24086
China-HK 17067 7262 24452 New Zealand 11236 2658 13992
Denmark 25199 6947 32769 Norway 23415 9221 32933
Finland 17991 4741 24952 Pakistan 389 79 463
France 19178 4622 24587 Philippines 760 176 868
Germany 20058 5716 26219 Portugal 8579 2644 9976
Greece 9991 2460 11551 Spain 11255 3415 14052
Iceland 25294 6706 30622 Sweden 20687 4487 26866
India 291 84 385 Switzerland 27648 7815 36864
Indonesia 351 216 613 Thailand 1226 479 1997
Ireland 13045 4791 20132 UK. 19743 4316 23844
Italy 16134 4075 20580 U.S.A. 26387 6540 32377
Japan 21478 7923 30124

reg cpop gdppop

Source | SS at MS Number of obs = 33
————————— b mm e F( 1, 31) = 1331.29
Model | 2.5686e+09 1 2.5686e+09 Prob > F = 0.0000
Residual | 59810749.2 31 1929379.01 R-squared = 0.9772
————————— e Adj R-squared = 0.9765
Total | 2.6284e+09 32 82136829.4 Root MSE = 1389.0
cpop | Coef std. Err t P>|t] [95% Conf. Intervall
_________ o o e
gdppop | .7303066 .0200156 36.487 0.000 .6894845 .7711287
_cons | 379.4871 443 .6764 0.855 0.399 -525.397 1284.371

ivreg cpop (gdppop=gfcfpop)

Instrumental variables (2SLS) regression

Source | SS af MS Number of obs = 33
————————— b oo F( 1, 31) = 1192.18
Model | 2.5679e+09 1 2.5679e+09 Prob > F = 0.0000
Residual | 60494538.1 31 1951436.71 R-squared = 0.9770
————————— e Adj R-squared = 0.9762
Total | 2.6284e+09 32 82136829.4 Root MSE = 1396.9
cpop | Coef. Sstd. Err. t P>|t] [95% Conf. Intervall
_________ o
gdppop | .7183909 .0208061 34.528 0.000 .6759566 .7608252
_cons | 600.946 456.7973 1.316 0.198 -330.6982 1532.59

Instrumented: gdppop
Instruments: gfcfpop

The researcher in Exercise 10.3 discovers that last year's advertising budget, A(—1), is also an
important determinant of A, so that the model is

S==ﬁ1+-ﬁy4+-u5
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10.6

10.7

10.8

10.9

A=04+ S + 06A(-1) + uy
Explain how this information could be used to obtain a consistent estimator of 3,, and prove that
it is consistent.

Suppose that A(—1) in Exercise 10.5 also has an influence on S. How would this affect the
fitting of the model?

The researcher in Exercise 10.3 finds out that the average price of the product, P, and last year's
sales, S(—1), are important determinants of S, so that the model is
S= ﬁl + ﬁzA + ﬁ}P + ﬁ4S(—1) + Ug

A:(x1+a2S+uA

How would this affect the fitting of the model?
In principle ASVABC might be a positive function of S, in which case the educational attainment

model should have two equations:

S ﬁl + ﬁzASVABC + ﬂgSM + Ug

ASVABC = o4+ 06S + uy

Using your EAEF data set, fit the second equation, first using OLS, second using instrumental
variables estimation with SM as an instrument. Investigate analytically the likely direction of
the bias in the slope coefficient in the OLS regression, and check whether a comparison of the
OLS and IV estimates confirms your analysis.

The output from a Durbin—Wu-Hausman test using the regressions in Exercise 10.4 is shown.
Perform the test and state whether or not it supports your discussion in Exercise 10.4.

. hausman, constant sigmamore

---- Coefficients ----
| (b) (B) (b-B)  sqgrt(diag(V_b-V_B))
| Prior Current Difference S.E.
_________ o
gdppop |  .7183909 .7303066 -.0119157 .0052323
_cons | 600.946 379.4871 221.4589 97.24403
_________ o

b = less efficient estimates obtained previously from ivreg.
= more efficient estimates obtained from regress.

Test: Ho: difference in coefficients not systematic

chi2( 1) = (b-B)'[(V_b-V_B)"(-1)] (b-B)
= 5.19
Prob>chi2 = 0.0228
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BINARY CHOICE AND LIMITED
DEPENDENT MODELS, AND
MAXIMUM LIKELIHOOD ESTIMATION

Economists are often interested in the factors behind the decision-making of individuals or enterprises.
Examples are:

- Why do some people go to college while others do not?

- Why do some women enter the labor force while others do not?
- Why do some people buy houses while others rent?

- Why do some people migrate while others stay put?

The models that have been developed are known as binary choice or qualitative response models
with the outcome, which we will denote Y, being assigned a value of 1 if the event occurs and 0
otherwise. Models with more than two possible outcomes have been developed, but we will restrict
our attention to binary choice. The linear probability model apart, binary choice models are fitted
using maximum likelihood estimation. The chapter ends with an introduction to this topic.

11.1 The Linear Probability Model

The simplest binary choice model is the linear probability model where, as the name implies, the
probability of the event occurring, p, is assumed to be a linear function of a set of explanatory
variable(s):

pi=p(Yi=1)=pi+ BX; (11.1)

Graphically, the relationship is as shown in Figure 11.1, if there is just one explanatory
variable. Of course p is unobservable. One has data only on the outcome, Y. In the linear probability
model this is used as a dummy variable for the dependent variable.

As an illustration, we investigate the factors influencing graduating from high school. We will
define a variable GRAD that is equal to 1 for those individuals who graduated, and O for those who
dropped out, and we will regress it on ASVABC, the composite cognitive ability test score. The
regression output shows the result of fitting this linear probability model, using EAEF Data Set 21.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 16.05.01.
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Xi X
Figure 11.1. Linear probability model
. reg GRAD ASVABC

Source | SS af MS Number of obs = 570
————————— et T F( 1, 568) = 112.59
Model | 7.13422753 1 7.13422753 Prob > F = 0.0000
Residual | 35.9903339 568 .063363264 R-squared = 0.1654
————————— e Adj R-squared = 0.1640
Total | 43.1245614 569 .07579009 Root MSE = .25172
GRAD | Coef. std. Err. t P>|t] [95% Conf. Intervall
_________ o o e
ASVABC | .0121518 .0011452 10.611  0.000 .0099024 .0144012
cons | .3081194 .0583932 5.277  0.000 .1934264 .4228124

The regression result suggests that the probability of graduating from high school increases by a
proportion 0.012, that is, 1.2 percent, for every point increase in the ASVABC score. ASVABC is
scaled so that it has mean 50 and standard deviation 10, so a one-standard deviation increase in the
score would increase the probability of graduating by 12 percent. The intercept implies that if
ASVABC were 0, the probability of graduating would be 31 percent. However the ASVABC score is
scaled in such a way as to make its minimum about 20, and accordingly it is doubtful whether the
interpretation should be taken at face value.

Unfortunately, the linear probability model has some serious defects. First, there are problems
with the disturbance term. As usual, the value of the dependent variable Y; in observation i has a
nonstochastic component and a random component. The nonstochastic component depends on X; and
the parameters and is the expected value of Y; given X;, E(Y; | X;). The random component is the
disturbance term.

Yi=EY; 1 X) +u; (11.2)

It is simple to compute the nonstochastic component in observation i because Y can take only two
values. Itis 1 with probability p; and O with probability (1 — p,):

E(Y) =1xp;+0x(1 —p) =pi=Bi + BX; (11.3)
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Figure 11.2. Disturbance term in the linear probability model

The expected value in observation i is therefore 8; + [,X;. This means that we can rewrite the

model as
Y,': ﬁ1+ﬁ2X,'+Mi (114)

The probability function is thus also the nonstochastic component of the relationship between Y
and X. It follows that, for the outcome variable Y; to be equal to 1, as represented by the point A in
Figure 11.2, the disturbance term must be equal to (I — f3; — B.X;). For the outcome to be 0, as
represented by the point B, the disturbance term must be (—f; — 3,X;). Thus the distribution of the
disturbance term consists of just two specific values. It is not even continuous, never mind normal.
This means that the standard errors and the usual test statistics are invalidated. For good measure, the
two possible values of the disturbance term change with X, so the distribution is heteroscedastic as
well. It can be shown that the population variance of u; is (B; + B.X;) (1 — B — B.X;), and this varies
with X.

The other problem is that the predicted probability may be greater than 1 or less than O for
extreme values of X. In the example of graduating from high school, the regression equation predicts
a probability greater than 1 for the 176 respondents with ASVABC scores greater than 56.

The first problem is dealt with by fitting the model with a technique known as maximum
likelihood estimation, described in Section 11.6, instead of least squares. The second problem
involves elaborating the model as follows. Define a variable Z that is a linear function of the
explanatory variables. In the present case, since we have only one explanatory variable, this function

1S
Z= B + BoX; (11.5)

Next, suppose that p is a sigmoid (S-shaped) function of Z, for example as shown in Figure 11.3.
Below a certain value of Z, there is very little chance of the individual graduating from high school.
Above a certain value, the individual is almost certain to graduate. In between, the probability is
sensitive to the value of Z.
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Figure 11.3. Logistic function

This deals with the problem of nonsense probability estimates, but then there is the question of
what should be the precise mathematical form of this function. There is no definitive answer to this.
The two most popular forms are the logistic function, which is used in logit estimation, and the
cumulative normal distribution, which is used in probit estimation. According to one of the leading
authorities on the subject, Amemiya (1981), both give satisfactory results most of the time and neither
has any particular advantage. We will start with the former.

11.2 Logit Analysis

In logit estimation one hypothesizes that the probability of the occurrence of the event is determined
by the function

1

l4+e %

p,=F(Z,)= (11.6)

This is the function shown in Figure 11.3. As Z tends to infinity, ¢ tends to 0 and p has a
limiting upper bound of 1. As Z tends to minus infinity, ¢ “ tends to infinity and p has a limiting lower
bound of 0. Hence there is no possibility of getting predictions of the probability being greater than 1
or less than 0.

The marginal effect of Z on the probability, which will be denoted f(Z), is given by the derivative
of this function with respect to Z:

€_Z

dp
7=t -~ 11.7
1@ dZ (1+e%)? LD
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Figure 11.4. Marginal effect of Zon the probability

The function is shown in Figure 11.4. You can see that the effect of changes in Z on the
probability is very small for large positive or large negative values of Z, and that the sensitivity of the

probability to changes in Z is greatest at the midpoint value of 0.

In the case of the example of graduating from high school, the function is

pi =

1

If we fit the model, we get the following output:

logit GRAD ASVABC

Iteration 0: Log Likelihood =-162.
Iteration 1: Log Likelihood =-132.
Iteration 2: Log Likelihood =-117.
Iteration 3: Log Likelihood =-117.
Iteration 4: Log Likelihood =-117.
Iteration 5: Log Likelihood =-117.

Logit Estimates

29468
97646
99291
36084
35136
35135

| 4 o~ Pi-BaASVABC,

Log Likelihood = -117.35135
GRAD | Coef std. Err
ASVABC | .1666022 .0211265
_cons | -5.003779 .8649213

7.886
-5.785

0.000
0.000

(11.8)
Number of obs = 570
chi2 (1) = 89.89
Prob > chi2 = 0.0000
Pseudo R2 = 0.2769
[95% Conf. Interval]
.1251951 .2080094
-6.698993 -3.308564

The model is fitted by maximum likelihood estimation and, as the output indicates, this uses an
iterative process to estimate the parameters.
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Figure 11.5. Cumulative and marginal effects of ASVABC

The z statistics in the Stata output are approximations to ¢ statistics and have nothing to do with
the Z variable discussed in the text. (Some regression applications describe them as 7 statistics.) The z
statistic for ASVABC is highly significant. How should one interpret the coefficients? To calculate the
marginal effect of ASVABC on p we need to calculate dp/dASVABC. You could calculate the
differential directly, but the best way to do this, especially if Z is a function of more than one variable,
is to break it up into two stages. p is a function of Z, and Z is a function of ASVABC, so

dp dp dz
dASVABC ~ dz aasvapc 1 DP (1
where f(Z) is as defined above. The probability of graduating from high school, and the marginal
effect, are plotted as functions of ASVABC in Figure 11.5.

How can you summarize the effect of the ASVABC score on the probability of graduating? The
usual method is to calculate the marginal effect at the mean value of the explanatory variables. In this
sample the mean value of ASVABC was 50.15. For this value, Z is equal to 3.3514, and ¢ is equal to
0.0350. Using this, f{Z) is 0.0327 and the marginal effect is 0.0054:

e’ 0.0350
Z = =
Al (+e?)? P (1.0350)>

x0.1666 =0.0054 (11.10)

In other words, at the sample mean, a one-point increase in ASVABC increases the probability of
going to college by 0.5 percent. This is a very small amount and the reason is that, for those with the
mean ASVABC, the estimated probability of graduating is very high:

1 1
l+eZ 1+0.0350

p= =0.9661 (11.11)
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See also Figure 11.5. Of course we could calculate the marginal effect for other values of
ASVABC if we wished and in this particular case it may be of interest to evaluate it for low ASVABC,
where individuals are at greater risk of not graduating. For example, when ASVABC is 30, Z is —
0.0058, e is 1.0058, f(Z) is 0.2500, and the marginal effect is 0.0417, or 4.2 percent. It is much
higher because an individual with such a low score has only a 50 percent chance of graduating and an
increase in ASVABC can make a substantial difference.

Generalization to More than One Explanatory Variable.
Logit analysis is easily extended to the case where there is more than one explanatory variable.
Suppose that we decide to relate graduating from high school to ASVABC, SM, the number of years of

schooling of the mother, SF, the number of years of schooling of the father, and a dummy variable
MALE that is equal to 1 for males, O for females. The Z variable becomes

Z =B + BASVABC + B:SM + BiSF + BsMALE (11.12)

The corresponding regression output (with iteration messages deleted) is shown below:

. logit GRAD ASVABC SM SF MALE

Logit Estimates Number of obs = 570
chi2 (4) = 91.59

Prob > chi2 = 0.0000

Log Likelihood = -116.49968 Pseudo R2 = 0.2822
GRAD | Coef. std. Err. z P>|z]| [95% Conf. Intervall
_________ o o o oo o e e e emolo -
ASVABC | .1563271 .0224382 6.967 0.000 .1123491 .2003051
SM | .0645542 .0773804 0.834 0.404 -.0871086 .216217

SF | .0054552 .0616822 0.088 0.930 -.1154397 .12635

MALE | -.2790915 .3601689 -0.775 0.438 -.9850095 .4268265
cons | -5.15931 .994783 -5.186 0.000 -7.109049 -3.209571

The mean values of ASVABC, SM, SF, and MALE were as shown in Table 11.1, and hence the
value of Z at the mean was 3.3380. From this one obtains 0.0355 for ¢“ and 0.0331 for f{Z). The
table shows the marginal effects, calculated by multiplying f{Z) by the estimates of the coefficients of
the logit regression.

According to the computations, a one-point increase in the ASVABC score increases the
probability of going to college by 0.5 percent, every additional year of schooling of the mother
increases the probability by 0.2 percent, every additional year of schooling of the father increases the
probability by a negligible amount, and being male reduces the probability by 0.9 percent. From the
regression output it can be seen that the effect of ASVABC was significant at the 0.1 percent level but
the effects of the parental education variables and the male dummy were insignificant.
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TaBLE 11.1

Logit Estimation. Dependent Variable: GRAD

Variable Mean b Meanx b fiZ) bf(Z)
ASVABC 50.151 0.1563 7.8386 0.0331 0.0052
SM 11.653 0.0646 0.7528 0.0331 0.0021
SF 11.818 0.0055 0.0650 0.0331 0.0002
MALE 0.570 -0.2791 -0.1591 0.0331 -0.0092
Constant 1.000 -5.1593 -5.1593
Total 3.3380

Goodness of Fit and Statistical Tests

There is no measure of goodness of fit equivalent to R” in maximum likelihood estimation. In default,
numerous measures have been proposed for comparing alternative model specifications. Denoting the
actual outcome in observation i as Y;, with Y; = 1 if the event occurs and O if it does not, and denoting
the predicted probability of the event occurring p,, the measures include the following:

- the number of outcomes correctly predicted, taking the prediction in observation i as 1 if p,

is greater than 0.5 and O if it is less;

- the sum of the squared residuals Z(Yi -p)%s

i=1
- the correlation between the outcomes and predicted probabilities, r, 5 -

- the pseudo-R” in the logit output, explained in Section 11.6.

Each of these measures has its shortcomings and Amemiya (1981) recommends considering more than
one and comparing the results.

Nevertheless, the standard significance tests are similar to those for the standard regression
model. The significance of an individual coefficient can be evaluated via its ¢ statistic. However,
since the standard error is valid only asymptotically (in large samples), the same goes for the ¢ statistic,
and since the 7 distribution converges on the normal distribution in large samples, the critical values of
the latter should be used. The counterpart of the F'test of the explanatory power of the model (Hy: all
the slope coefficients are 0, H;: at least one is nonzero) is a chi-squared test with the chi-squared
statistic in the logit output distributed under H, with degrees of freedom equal to the number of
explanatory variables. Details are provided in Section 11.6.

Exercises

11.1 Investigate the factors affecting going to college using your EAEF data set. Define a binary
variable COLLEGE to be equal to 1 if § > 12 and O otherwise. Regress COLLEGE on ASVABC,
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SM, SF, and MALE (1) using ordinary least squares, and (2) using logit analysis. Calculate the
marginal effects in the logit analysis and compare them with those obtained using OLS.

11.2* A researcher, using a sample of 2,868 individuals from the NLSY, is investigating how the
probability of a respondent obtaining a bachelor’s degree from a four-year college is related to
the respondent’s score on ASVABC. 26.7 percent of the respondents earned bachelor’s degrees.
ASVABC ranged from 22 to 65, with mean value 50.2, and most scores were in the range 40 to
60. Defining a variable BACH to be equal to 1 if the respondent has a bachelor’s degree (or
higher degree) and O otherwise, the researcher fitted the OLS regression (standard errors in
parentheses):

BACH = -0.864 + 0.023ASVABC R*=021
(0.042) (0.001)

She also fitted the following logit regression:

Z = -11.103 + 0.189 ASVABC
(0.487) (0.009)

where Z is the variable in the logit function. Using this regression, she plotted the probability and
marginal effect functions shown in the diagram..

(a) Give an interpretation of the OLS regression. and explain why OLS is not a satisfactory
estimation method for this kind of model.

(b) With reference to the diagram, discuss the variation of the marginal effect of the ASVABC
score implicit in the logit regression and compare it with that in the OLS regression.

1.0 0.05
0.8 1 + 0.04
45 —
Q0 3]
S 0.6 + 0.03 %
(0]
2 K
kS £
E 04 too2 §
(3 =
0.2 - + 0.01
0.0 ‘ ‘ ‘ ‘ 0.00
0 20 40 60 80 100
ASVABC

(c) Sketch the probability and marginal effect diagrams for the OLS regression and compare
them with those for the logit regression. (In your discussion, make use of the information in
the first paragraph of this question.)
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11.3 Probit Analysis

An alternative approach to the binary choice model is to use the cumulative standardized normal
distribution to model the sigmoid relationship F(Z). (A standardized normal distribution is one with
mean 0 and unit variance). As with logit analysis, you start by defining a variable Z that is a linear
function of the variables that determine the probability:

/= ﬁl + ﬁzXz + ...+ ﬁka (1113)

F(Z), the standardized cumulative normal distribution, gives the probability of the event occurring
for any value of Z:

pi=F(Z) (11.14)

Maximum likelihood analysis is used to obtain estimates of the parameters. The marginal effect
of X; is dp/0X; which, as in the case of logit analysis, is best computed as

op dp JZ
7" _ r(72).B. 11.15
x T OB (11.15)
Now since F(Z) is the cumulative standardized normal distribution, f{Z), its derivative, is just the
standardized normal distribution itself:

1.

-—Z
\/;_e 2 (11.16)
(4

f(2)=

1.00

0.75 4

0.50

Cumulative effect
Marginal effect

0.25 4

0.00

Figure 11.6. Cumulative and marginal normal effects of Z
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Figure 11.6 plots F(Z) and f{Z) for probit analysis. As with logit analysis, the marginal effect of
any variable is not constant. It depends on the value of f{Z), which in turn depends on the values of
each of the explanatory variables. To obtain a summary statistic for the marginal effect, the usual
procedure is parallel to that used in logit analysis. You calculate Z for the mean values of the
explanatory variables. Next you calculate f{Z), as in (11.16). Then you calculate f{Z); to obtain the
marginal effect of X;.

This will be illustrated with the example of graduating from high school, using the same
specification as in the logit regression. The regression output, with iteration messages deleted, is
shown below:

. probit GRAD ASVABC SM SF MALE

Probit Estimates Number of obs = 570
chi2 (4) = 94.12

Prob > chi2 = 0.0000

Log Likelihood = -115.23672 Pseudo R2 = 0.2900
GRAD | Coef.  Std. Err. z P>|z| [95% Conf. Interval]
_________ o o o
ASVABC | .0831963 .0117006 7.110 0.000 .0602635 .106129
SM | .0353463 .0425199 0.831 0.406 -.0479913 .1186838

SF | .0057229 .032375 0.177 0.860 -.0577309 .0691766

MALE | -.1883038 .1873426 -1.005 0.315 -.5554885 .178881
cons | -2.702067 .5335551 -5.064 0.000 -3.747816 -1.656318

The computation of the marginal effects at the sample means is shown in Table 11.2. Zis 1.8418
when evaluated at the mean values of the variables and f{Z) is 0.0732. The estimates indicate that a
one-point increase in the ASVABC score increases the probability of going to college by 0.6 percent,
every additional year of schooling of the mother increases the probability by 0.3 percent, every
additional year of schooling of the father increases the probability by a negligible amount, and being
male reduces the probability by 1.4 percent. Generally logit and probit analysis yield similar marginal
effects. However, the tails of the logit and probit distributions are different and they can give different
results if the sample is unbalanced, with most of the outcomes similar and only a small minority
different. This is the case in the present example because only 8 percent of the respondents failed to
graduate, and in this case the estimates of the marginal effects are somewhat larger for the probit
regression.

TaBLE 11.2

Probit Estimation. Dependent Variable: GRAD

Variable Mean b Meanx b fiz) bf(Z)
ASVABC 50.151 0.0832 4.1726 0.0732  0.0061
SM 11.653 0.0353 04114 0.0732  0.0026
SF 11.818 0.0057 0.0674 0.0732  0.0004
MALE 0.570 -0.1883 -0.1073 0.0732 -0.0138
Constant 1.000 -2.7021 -2.7021

Total 1.8418
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11.3 Regress the variable COLLEGE defined in Exercise 11.1 on ASVABC, MALE, SM and SF using
probit analysis. Calculate the marginal effects and compare them with those obtained using

OLS and logit analysis.

11.4* The following probit regression, with iteration messages deleted, was fitted

observations on females in the NLSY in 1994.

probit WORKING S AGE CHILDLO6 CHILDL16 MARRIED ETHBLACK ETHHISP if

Probit estimates

Number of obs =

LR chi2(7)

Prob > chi2 =
Pseudo R2 =

using 2726

MALE==

2726
165.08
0.0000
0.0556

Log likelihood = -1403.0835

WORKING | Coef std. Err
————————— +

S | .0892571 .0120629
AGE | -.0438511 .012478
CHILDLO6 | -.5841503 .0744923
CHILDL16 | ~-.1359097 .0792359
MARRIED | -.0076543 .0631618
ETHBLACK | -.2780887 .081101
ETHHISP | -.0191608 .1055466
_cons | .673472 .2712267

.0656143
.0683076
.7301525
.2912092
.1314492
.4370436
.2260284
.1418775

L1129
-.0193946
-.4381482

.0193897
.1161407
-.1191337
.1877068
1.205066

WORKING is a binary variable equal to 1 if the respondent was working in 1994, 0 otherwise.

CHILDLO6 is a dummy variable equal to 1 if there was a child aged less than 6 in the

household, 0 otherwise. CHILDLI6 is a dummy variable equal to 1 if there was a child aged less
than 16, but no child less than 6, in the household, 0 otherwise. MARRIED is equal to 1 if the
respondent was married with spouse present, 0 otherwise.

The remaining variables are as

described in FAEF Regression Exercises. The mean values of the variables are given in the

output below:

sum WORKING S AGE CHILDLO6 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==

Variable
WORKING
S

AGE
CHILDLO6
CHILDL16
MARRIED
ETHBLACK
ETHHISP

Calculate the marginal effects and discuss whether they are plausible.

.7652238
13.309¢98
17.64637
.3991196
.3180484
.6228907
.1305943
.0722671

description are posted on the website.]

.4239366
2.444771

2.24083
.4898073
.4658038
.4847516
.3370179
.2589771

O OO OOk oo

NN

HHEHRRERRNDOR

[The data set and a
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11.4 Censored Regressions: Tobit Analysis

Suppose that one hypothesizes the relationship
Y¥=B+ BX+u, (11.17)

with the dependent variable subject to either a lower bound Y; or an upper bound Y. In the case of a
lower bound, the model can be characterized as

Y*:ﬁl +B2X+M
Y=Y* for Y* > Y,
Y=Y, forY* < Y, (11.18)

and similarly for a model with an upper bound. Such a model is known as a censored regression
model because Y* is unobserved for Y* < Y, or Y* > Y. It is effectively a hybrid between a standard
regression model and a binary choice model, and OLS would yield inconsistent estimates if used to fit
it. To see this, consider the relationship illustrated in Figure 11.7, a one-shot Monte Carlo experiment
where the true relationship is

Y=-40+12X+u, (11.19)

the data for X are the integers from 11 to 60, and u is a normally distributed random variable with
mean O and standard deviation 10. If Y were unconstrained, the observations would be as shown in
Figure 11.7. However we will suppose that Y is constrained to be non-negative, in which case the
observations will be as shown in Figure 11.8. For such a sample, it is obvious that an OLS regression
that included those observations with Y constrained to be 0 would yield inconsistent estimates, with
the estimator of the slope downwards biased and that of the intercept upwards biased.

40 1
30 ~
20 ° ,."

10 | o oy

-10 + ]
-20 o .- e

-30 1 ® °

-40

Figure 11.7.
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40 ~

30

20 -

10 4

-10 +
20

-30 A

-40
Figure 11.8.
The remedy, you might think, would be to use only the subsample of unconstrained observations, but

even then the OLS estimators would be biased. An observation i will appear in the subsample only if
Y; >0, that is, if

40+ 1.2X;+u; >0 (11.20)
This requires
u; > 40 - 1.2X; (11.21)
f(u)
40-12X O u

Figure 11.9.
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40 -
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20 A

10 A

-10 1

-20

-30

-40
Figure 11.10.

and so u; must have the truncated distribution shown in Figure 11.9. In this example, the expected
value of u; must be positive and a negative function of X;. Since u; is negatively correlated with X, the
fourth Gauss-Markov condition is violated and OLS will yield inconsistent estimates.

Figure 11.10 displays the impact of this correlation graphically. The observations with the four
lowest values of X appear in the sample only because their disturbance terms (marked) are positive and
large enough to make Y positive. In addition, in the range where X is large enough to make the
nonstochastic component of Y positive, observations with large negative values of the disturbance term
are dropped. Three such observations, marked as circles, are shown in the figure. Both of these
effects cause the intercept to tend to be overestimated, and the slope to be underestimated, in an OLS
regression.

If it can be assumed that the disturbance term has a normal distribution, one solution to the
problem is to use tobit analysis, a maximum likelihood estimation technique known that combines
probit analysis with regression analysis. A mathematical treatment will not be attempted here. Instead
it will be illustrated using data on expenditure on household equipment from the Consumer
Expenditure Survey data set. Figure 11.11 plots this category of expenditure, HEQ, and total
household expenditure, EXP. For 86 of the 869 observations, expenditure on household equipment is
0. The output from a tobit regression is shown. In Stata the command is tobit and the point of left-
censoring is indicated by the number in parentheses after “11”. If the data were right-censored, “11”
would be replaced by “ul”. Both may be included.
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Figure 11.11.

60000

Household expenditure ($)

80000

100000

120000 140000

Number of obs
chi2 (1)

Prob > chi2
Pseudo R2

160000

Expenditure on household equipment and total household expenditure

= 869
= 315.41
= 0.0000
= 0.0223

P>|t]
19.273 0.000
-6.756 0.000

[95% Conf.

.0467789
-854.0813

Interval]

.0573866
-469.5499

tobit HEQ EXP, 11(0)

Tobit Estimates

Log Likelihood = -6911.0175
HEQ | Coef std. Err
EXP | .0520828 .0027023
cons | -661.8156  97.95977

se | 1521.896 38.6333
Obs. summary:

86 left-censored observations at HEQ<=0
783 uncensored observations

16

OLS regressions including and excluding the observations with 0 expenditure on household
equipment yield slope coefficients of 0.0472 and 0.0468, respectively, both of them below the tobit
estimate, as expected. The size of the bias tends to increase with the proportion of constrained
observations. In this case only 10 percent are constrained, and hence the difference between the tobit

and OLS estimates is small.

Tobit regression yields inconsistent estimates if the disturbance term does not have a normal
distribution or if it is subject to heteroscedasticity (Amemiya, 1984). Judging by the plot in Figure
11.11, the observations in the example are subject to heteroscedasticity and it may be preferable to use

expenditure on household equipment as a proportion of total expenditure as the dependent variable, in
the same way that in his seminal study, which investigated expenditure on consumer durables, Tobin
(1958) used expenditure on durables as a proportion of disposable personal income.
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Exercise

11.5 Using the CES data set, perform a tobit regression of expenditure on your commodity on total
household expenditure, and compare the slope coefficient with those obtained in OLS
regressions including and excluding observations with 0 expenditure on your commodity.

11.5 Sample Selection Bias

In the tobit model, whether or not an observation falls into the regression category (¥ > Y, or Y < Yy)
or the constrained category (Y = Y, or Y = Y;) depends entirely on the values of the regressors and the
disturbance term. However, it may well be that participation in the regression category may depend
on factors other than those in the regression model, in which case a more general model specification
with an explicit two-stage process may be required. The first stage, participation in the regression
category, or being constrained, depends on the net benefit of participating, B*, a latent (unobservable)
variable that depends on a set of m — 1 variables Q; and a random term &:

B =6,+Y 8,0, +¢ (11.22)
j=2

The second stage, the regression model, is parallel to that for the tobit model:

k

Yi* :ﬁIZﬁiji +u

j=2
Y, =Y for B, >0,
Y, is not observed for B; <0 (11.23)
For an observation in the sample,
E(u;| Bf >0)=E(u;1&>-8 - ».5,0;) (11.24)

j=2

m
If & and u, are distributed independently, E(u; | & > -6, — 26 jQ i ) reduces to the unconditional E(u;)
j=2
and the selection process does not interfere with the regression model. However if & and u; are
correlated, E(u;) will be nonzero and problems parallel to those in the tobit model arise, with the
consequence that OLS estimates are inconsistent (see the box on the Heckman two-step procedure). If
it can be assumed that & and u; are jointly normally distributed with correlation p, the model may be
fitted by maximum likelihood estimation, with null hypothesis of no selection bias Hy : p = 0. The Q
and X variables may overlap, identification requiring in practice that at least one Q variable is not also
an X variable.
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The procedure will be illustrated by fitting an earnings function for females on the lines of
Gronau (1974), the earliest study of this type, using the LFP94 subsample from the NLSY data set
described in Exercise 11.4. CHILDLO06 is a dummy variable equal to 1 if there was a child aged less
than 6 in the household, O otherwise. CHILDLI6 is a dummy variable equal to 1 if there was a child
aged less than 16, but no child less than 6, in the household, O otherwise. MARRIED is equal to 1 if
the respondent was married with spouse present, 0 otherwise. The other variables have the same
definitions as in the EAEF data sets. The Stata command for this type of regression is “heckman” and
as usual it is followed by the dependent variable and the explanatory variables and qualifier, if any
(here the sample is restricted to females). The variables in parentheses after select are those
hypothesized to influence whether the dependent variable is observed. In this example it is observed
for 2,021 females and is missing for the remaining 640 who were not working in 1994. Seven
iteration reports have been deleted from the output.

heckman LGEARN S ASVABC ETHBLACK ETHHISP if MALE==0, select (S AGE CHILDLO6
> CHILDL16 MARRIED ETHBLACK ETHHISP)

Iteration O: log likelihood = -2683.5848 (not concave)
Iteration 8: log likelihood = -2668.8105
Heckman selection model Number of obs = 2661
(regression model with sample selection) Censored obs = 640
Uncensored obs = 2021
Wald chi2 (4) = 714.73
Log likelihood = -2668.81 Prob > chi2 = 0.0000
| Coef. Std. Err. z P>|z| [95% Conf. Intervall
_________ o o o oo e e eemoloC
LGEARN |
S | .095949 .0056438 17.001 0.000 .0848874 .1070106
ASVABC | .0110391 .0014658 7.531 0.000 .0081663 .0139119
ETHBLACK | -.066425 .0381626 -1.741 0.082 -.1412223 .0083722
ETHHISP | .0744607 .0450095 1.654 0.098 -.0137563 .1626777
_cons |  4.901626 .0768254 63.802  0.000 4.751051 5.052202
_________ o o o oo e e e e eemolo_
select |
S | .1041415 .0119836 8.690 0.000 .0806541 .1276288
AGE | -.0357225 .011105 -3.217 0.001 -.0574879 -.0139572
CHILDLO6 | -.3982738 .0703418 -5.662 0.000 -.5361412 -.2604064
CHILDL16 | .0254818 .0709693 0.359 0.720 -.1136155 .164579
MARRIED | .0121171 .0546561 0.222 0.825 -.0950069 .1192412
ETHBLACK | -.2941378 .0787339 -3.736 0.000 -.4484535 -.1398222
ETHHISP | -.0178776 .1034237 -0.173 0.863 -.2205843 .1848292
_cons | .1682515 .2606523 0.646 0.519 -.3426176 .6791206
_________ o o e
/athrho | 1.01804 .0932533 10.917 0.000 .8352669 1.200813
/1lnsigma | -.6349788 .0247858 -25.619 0.000 -.6835582 -.5863994
_________ o oo o e e e dmeilloo
rho | .769067 .0380973 .683294 .8339024
sigma | .5299467 .0131352 .5048176 .5563268

lambda | .4075645 .02867 .3513724 .4637567
LR test of indep. egns. (rho = 0): chi2 (1) = 32.90 Prob > chi2 = 0.0000

First we will check whether there is evidence there is evidence of selection bias, that is, that p

1
#0. For technical reasons, p is estimated indirectly through atanh p = %log 1+_p , but the null
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hypothesis Hy: atanh p = 0 is equivalent to Hy: p = 0. atanh p is denoted “athrho” in the output and,
with an asymptotic ¢ statistic of 10.92, the null hypothesis is rejected. A second test of the same null
hypothesis that can be effected by comparing likelihood ratios is described in Section 11.5.

The regression results indicate that schooling and the ASVABC score have highly significant
effects on earnings, that schooling has a positive effect on the probability of working, and that age,
having a child aged less than 6, and being black have negative effects. The probit coefficients are
different from those reported in Exercise 11.4, the reason being that, in a model of this type, probit
analysis in isolation yields inefficient estimates.

. reg LGEARN S ASVABC ETHBLACK ETHHISP if MALE==

Source | SS af MS Number of obs = 2021
————————— o m s s m e m e mm e m e mm e m—m - F( 4, 2016) = 168.55
Model | 143.231149 4 35.8077873 Prob > F = 0.0000
Residual | 428.301239 2016 .212451012 R-squared = 0.2506
————————— B e Adj R-squared = 0.2491
Total | 571.532389 2020 .282936826 Root MSE = .46092
lgearn | Coef. Std. Err. t P>t [95% Conf. Intervall
_________ N
S | .0807836 .005244 15.405 0.000 .0704994 .0910677

ASVABC | .0117377 .0014886 7.885 0.000 .0088184 .014657
ETHBLACK | -.0148782 .0356868 -0.417 0.677 -.0848649 .0551086
ETHHISP | .0802266 .041333 1.941 0.052 -.0008333 .1612865
_cons | 5.223712 .0703534 74 .250 0.000 5.085739 5.361685

It is instructive to compare the regression results with those from an OLS regression not
correcting for selection bias. The results are in fact quite similar, despite the presence of selection
bias. The main difference is in the coefficient of ETHBLACK. The probit regression indicates that
black females are significantly less likely to work than whites, controlling for other characteristics. If
this is the case, black females, controlling for other characteristics, may require higher wage offers to
be willing to work. This would reduce the apparent earnings discrimination against them, accounting
for the smaller negative coefficient in the OLS regression. The other difference in the results is that
the schooling coefficient in the OLS regression is 0.081, a little lower than that in the selection bias
model, indicating that selection bias leads to a modest underestimate of the effect of education on
female earnings.
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The Heckman Two-Step Procedure

The problem of selection bias arises because the expected value of u is nonzero for observations in
the selected category if u and € are correlated. It can be shown that ,for these observations,

GuS l
L

E(u,) & >-8-Y 6,0,)= .

j=2 £
where ©,. is the population covariance of u and &, o, is the standard deviation of & and A,
described by Heckman (1976) as the inverse of Mill’s ratio, is given by

F(v;)

where

and the functions f and F are as defined in the section on probit analysis: f(v;) is the density
function for £ normalized by its standard deviation and F(v;) is the probability of B; being positive.

It follows that

m k m
EY;|&>-6— Y.86,0,)=EPBi+ D B,X; +ule>-86->06,0;)

j=2 Jj=2 Jj=2

k
:[31 + Zﬁiji + G_usli
Jj=2 O-s

The sample selection bias arising in a regression of Y on the X variables using only the
selected observations can therefore be regarded as a form of omitted variable bias, with A the
omitted variable. However, since its components depend only on the selection process, it can be
estimated from the results of probit analysis of selection (the first step). If it is included as an
explanatory variable in the regression of Y on the X variables, least squares will then yield
consistent estimates.

As Heckman acknowledges, the procedure was first employed by Gronau (1974), but it is
known as the Heckman two-step procedure in recognition of its development by Heckman into an
everyday working tool, its attraction being that it is computationally far simpler than maximum
likelihood estimation of the joint model. However, with the improvement in computing sp9eeds
and the development of appropriate procedures in regression applications, maximum likelihood
estimation of the joint model is no more burdensome than the two-step procedure and it has the
advantage of being more efficient.
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One of the problems with the selection bias model is that it is often difficult to find variables that
belong to the selection process but not the main regression. Having a child aged less than 6 is an
excellent variable because it clearly affects the willingness to work of a female but not her earning
power while working, and for this reason the example discussed here is very popular in expositions of
the model.

One final point, made by Heckman (1976): if a selection variable is illegitimately included in a
least squares regression, it may appear to have a significant effect. In the present case, if CHILDL06
is included in the earnings function, it has a positive coefficient significant at the 5 percent level. The
explanation would appear to be that females with young children tend to require an especially
attractive wage offer, given their education and other endowments, to be induced to work.

Exercises

11.6* Using your EAEF data set, investigate whether there is evidence that selection bias affects the
least squares estimate of the returns to college education. Define COLLYEAR =S - 12if §> 12,
0 otherwise, and LGEARNCL = LGEARN if COLLYEAR > 0, missing otherwise. Use the
heckman procedure to regress LGEARNCL on COLLYEAR, MALE, ETHBLACK, and
ETHHISP, with SM, SF, and SIBLINGS being used to determine whether the respondent
attended college. Note that ASVABC has (deliberately) been excluded from both parts of the
model. Then repeat the analysis (1) adding ASVABC to the probit part of the model (2) to both
parts. Comment on your findings.

11.7* Show that the tobit model may be regarded as a special case of a selection bias model.

11.8 Investigate whether having a child aged less than 6 is likely to be an especially powerful
deterrent to working if the mother is unmarried by downloading the LFP94 data set from the
website and repeating the regressions in this section adding an interactive dummy variable
MARLO6 defined as the product of MARRIED and CHILDLO6 to the selection part of the model.

11.6 An Introduction to Maximum Likelihood Estimation

Suppose that a random variable X has a normal distribution with unknown mean i and standard
deviation o. For the time being we will assume that we know that o is equal to 1. We will relax this
assumption later. You have a sample of two observations, values 4 and 6, and you wish to obtain an
estimate of . The common-sense answer is 5, and we have seen that this is scientifically respectable
as well since the sample mean is the least squares estimator and as such an unbiased and efficient
estimator of the population mean, provided certain assumptions are valid.

However, we have seen that in practice in econometrics the necessary assumptions, in particular
the Gauss-Markov conditions, are often not satisfied and as a consequence least squares estimators
lose one or more of their desirable properties. We have seen that in some circumstances they may be
inconsistent and we have been concerned to develop alternative estimators that are consistent.
Typically we are not able to analyze the finite-sample properties of these estimators and we just hope
that the estimators are well-behaved.
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Figure 11.12. Probability densities at X; = 4 and X, = 6 conditional on u = 3.5.

Once we are dealing with consistent estimators, there is no guarantee that those based on the least
squares criterion of goodness of fit are optimal. Indeed it can be shown that, under certain
assumptions, a different approach, maximum likelihood estimation, will yield estimators that, besides
being consistent, are asymptotically efficient (efficient in large samples).

To return to the numerical example, suppose for a moment that the true value of u is 3.5. The
probability density function of the normal distribution is given by

(xpy
fX)= L, 2[ ° ) (11.25)
o2

Figure 11.12 shows the distribution of X conditional on ¢ = 3.5 and ¢ = 1. In particular, the
probability density is 0.3521 when X = 4 and 0.0175 when X = 6. The joint probability density for the
two observations is the product, 0.0062.

Now suppose that the true value of u is 4. Figure 11.13 shows the distribution of X conditional
on this value. The probability density is 0.3989 when X = 4 and 0.0540 when X = 6. The joint
probability density for the two observations is now 0.0215. We conclude that the probability of
getting values 4 and 6 for the two observations would be three times as great if y were 4 than it would
be if u were 3.5. In that sense, y = 4 is more likely than u = 3.5. If we had to choose between these
estimates, we should therefore choose 4. Of course we do not have to choose between them.
According to the maximum likelihood principle, we should consider all possible values of u and select
the one that gives the observations the greatest joint probability density.
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Figure 11.13. Probability densities at X; = 4 and X, = 6 conditional on u = 4.0.

u
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Table 11.3 computes the probabilities of X = 4 and X = 6 for values of u from 3.5 to 6.5. The
fourth column gives the joint probability density, which is known as the likelihood function. The

likelihood function is plotted in Figure 11.14. You can see that it reaches a maximum for (= 5, the

average value of the two observations. We will now demonstrate mathematically that this must be the

case.

TaBLE 11.3

u JZCAV ) (") L log L

3.5 0.3521 0.0175 0.0062 -5.0879
4.0 0.3989 0.0540 0.0215 -3.8379
4.5 0.3521 0.1295 0.0456 -3.0879
4.6 0.3332 0.1497 0.0499 -2.9979
4.7 0.3123 0.1714 0.0535 -2.9279
4.8 0.2897 0.1942 0.0563 -2.8779
4.9 0.2661 0.2179 0.0580 -2.8479
5.0 0.2420 0.2420 0.0585 -2.8379
5.1 0.2179 0.2661 0.0580 -2.8479
52 0.1942 0.2897 0.0563 -2.8779
53 0.1714 0.3123 0.0535 -2.9279
5.4 0.1497 0.3332 0.0499 -2.9979
5.5 0.1295 0.3521 0.0456 -3.0879
6.0 0.0540 0.3989 0.0215 -3.8379
6.5 0.0175 0.3521 0.0062 -5.0879
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Figure 11.14. Likelihood and log-likelihood functions for p.

First, a little terminology. The likelihood function, written L(i | X; = 4, X, = 6) gives the joint

probability density as a function of u, given the sample observations. We will choose p so as to
maximize this function.

In this case, given the two observations and the assumption ¢ = 1, the likelihood function is given
by

1 1
1 —@-uy 1 —6-uy
L(u) = e 2 e 2 (11.26)
[\/ 2w I\/ 2w

We will now differentiate this with respect to i and set the result equal to 0 to obtain the first-
order condition for a maximum. We will then differentiate a second time to check the second-order
condition. Well, actually we won’t. Even with only two observations in the sample, this would be
laborious, and when we generalize to n observations it would be very messy. We will use a trick to
simplify the proceedings. log L is a monotonically increasing function of L. So the value of u that
maximizes L also maximizes log L, and vice versa. log L is much easier to work with, since

1 1
1 —e-w 1 —6-w
logL=log|| —e¢ ? ——e ?
[\/Zn I\/Zn

1 1
1 —@-w? 1 —6-w?
=log e’ + log e’ (11.27)
] N2

1 1
(4-uw)? +10g[ﬁ)—5(6 -’

=log

H-

N |~
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The maximum likelihood estimator, which we will denote (i, is the value of u that maximizes

this function, given the data for X. It is given by the first-order condition

dlogL
du

—(4— @)+ (6-A)=0 (11.28)

Thus i = 5. The second derivative is —2, so this gives a maximum value for log L, and hence L.

1 2 2 2
[Note that ~ o (a-p)” = _Ea +tap - E‘u . Hence the differential with respect to u is (a — u).]

Generalization to a Sample of n Observations

Consider a sample that consists of n observations X, ..., X,. The likelihood function L(u | X, ..., X,)
is now the product of n terms:

1 ) LV
L(.U)={\/;_ﬂe ) }x...x[\/;_ﬂe Vo) ] (11.29)

The log-likelihood function is now the sum of n terms:

1 1
1 (X 1 —(X,-w?
log L =log e? ...+log e?
[\/Zn N2r

(11.30)
1 1 s 1 1 s
=logl —— |-=(X, - ) +..+log| — |-—(X, — 1)
(\/271) 2! Nom ) 2
Hence the maximum likelihood estimator of i is given by
dlogl _ y )+ +(X, —@)=0 (11.31)
du
Thus
Y X, -nu=0 (11.32)
i=1

and the maximum likelihood estimator of u is the sample mean. Note that the second derivative is —n,
confirming that the log-likelihood has been maximized.
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Figure 11.15. Probability densities at X; = 4 and X, = 6 conditional on ¢ = 2.

Generalization to the Case Where o is Unknown.

We will now relax the assumption that ¢ is equal to 1 and accept that in practice it would be unknown,
like u. We will investigate the determination of its maximum likelihood graphically using the two-
observation example and then generalize to a sample of n observations.

Figure 11.15 shows the probability distribution for X conditional on i being equal to 5 and ©
being equal to 2. The probability density at X; = 4 and X, = 6 is 0.1760 and the joint density 0.0310.
Clearly we would obtain higher densities, and higher joint density, if the distribution had smaller
variance. If we try oequal to 0.5, we obtain the distribution shown in Figure 11.16. Here the
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Figure11.16. Probability densities at X; = 4 and X, = 6 conditional on = 0.5.
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Figure 11.17. Likelihood function for o.

individual densities are 0.1080 and the joint density 0.0117. Clearly we have made the distribution too
narrow, for X; and X, are now in its tails with even lower density than before.

Figure 11.17 plots the joint density as a function of 0. We can see that it is maximized when o is
equal to 1, and this is therefore the maximum likelihood estimate, provided that we have been correct
in assuming that the maximum likelihood estimate of u is 5.

We will now derive the maximum likelihood estimators of both i and ¢ simultaneously, for the
general case of a sample of n observations. The likelihood function is

| Mxewy I(Xn—u]z
Lu,c1X,,..X,)= o) Ixox| ——e?

e
o2m o2n

(11.33)

and so the log-likelihood function is

log L =log ! e_%(%]2 X ... X ;e_%(%)z

=log 1 e%(xt‘_u]2 +...+log ! e%(xn;“)z
o2 o2 (11.34)

2 2
- X -

:nlog( ! )_i(u) _-“_1( . u)
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1 1 1( 1 ) 1 )
=nlog—+nlog—+—| —— (X, - —.—=(X, -
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The partial derivative of this with respect to (t is

dogl _ 1 [x st (X, -] (11.35)
ou o

Setting this equal to 0, one finds that the maximum likelihood estimator of u is the sample mean,
as before. The partial derivative with respect to ois

n 1 ¥ 2
X. — 11.36
+— i§=l( ) ( )

Substituting its maximum likelihood estimator for u, and putting the expression equal to 0, we
obtain

62 =1 (X, - X)* (11.37)

s

Note that this is actually biased downwards in finite samples, the unbiased estimator being given

by the same expression with n replaced by (n — 1). However it is asymptotically more efficient using

the mean square error criterion, its smaller variance more than compensating for the bias. The bias in
any case attenuates as the sample size becomes large.

Application to the Simple Regression Model

Suppose that Y; depends on X; according to the simple relationship
Yi=Bi+ BXi+u (11.38)
Potentially, before the observations are generated, Y; has a distribution around (B, + B.X)),

according to the value of the disturbance term. We will assume that the disturbance term is normally
distributed with mean 0 and standard deviation o, so

Sfu)= ! e'%(f] (11.39)

o2m

The probability that Y will take a specific value Y; in observation i is determined by the
probability that u; is equal to (¥;— B;— B.X;). Given the expression above, the corresponding
probability density is

1 2 o

e
ov2n

] ( Y,—Bi-BoX, ]2

(11.40)
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The joint probability density function for the observations in the sample is the product of the
terms for each observation. Taking the observations as given, and treating the unknown parameters as
variables, we say that the likelihood function for f;, B, and o is given by

1 71()/17,317132)(1 ]2 1 71(1/"—[31—[52}(" ]2
L(B,,B,,01Y,,...Y,)= e\ © X...X e © (11.41)
ne : o2 oV2r
The log-likelihood function is thus given by
1 1 [ 2 2]
log L=nlog ——|¥, =B, =B, X,) +..+ (¥, - B, - B,X,) (11.42)
oV2r ) 20

The values of f3; and 3, that maximize this function are exactly the same as those obtained using the
least squares principle. However, the estimate of o is slightly different.

Goodness of Fit and Statistical Tests

As noted in the discussion of logit analysis, there is no measure of goodness of fit equivalent to R” in
maximum likelihood estimation. The pseudo-R” seen in some regression output, including that of
Stata, compares its log-likelihood, log L, with the log-likelihood that would have been obtained with
only the intercept in the regression, log L. A likelihood, being a joint probability, must lie between 0
and 1, and as a consequence a log-likelihood must be negative. The pseudo-R’ is the proportion by
which log L is smaller, in absolute size, than log Ly:

log L
log L,

pseudo-R* =1 — (11.43)

While it has a minimum value of 0, its maximum value must be less than 1 and unlike R it does not
have a natural interpretation. However variations in the likelihood, like variations in the residual sum
of squares in a standard regression, can be used as a basis for tests. In particular the explanatory
power of the model can be tested via the likelihood ratio statistic

2 log Li =2(log L — log Ly) (11.44)

0

is distributed as a chi-squared statistic with k - 1 degrees of freedom, where k - 1 is the number of
explanatory variables, under the null hypothesis that the coefficients of the variables are all jointly
equal to 0. Further, the validity of a restriction can be tested by comparing the constrained and
unconstrained likelihoods, in the same way that it can be tested by comparing the constrained and
unconstrained residual sum of squares in a least squares regression model. For example, the null
hypothesis Hy: p = 0 in the selection bias model can be tested by comparing the unconstrained
likelihood Ly with the likelihood Lz when the model is fitted assuming that u and € are distributed
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L
independently. Under the null hypothesis Hy: p = 0, the test statistic 2 logL—Uis distributed as a chi-
R

squared statistic with one degree of freedom. In the example in Section 11.4, the test statistic, 32.90,
appears in the last line of the output and the null hypothesis is rejected, the critical value of ;(2(1) being
10.83 at the 0.1 percent level.

As was noted in Section 11.2, the significance of an individual coefficient can be evaluated via its
asymptotic ¢ statistic, so-called because the standard error is valid only in large samples. Since the ¢
distribution converges on the normal distribution in large samples, the critical values of the latter
should be used.

Exercises

11.8* An event is hypothesized to occur with probability p. In a sample of n observations, it
occurred m times. Demonstrate that the maximum likelihood estimator of p is m/n.

11.9*% In Exercise 11.4, log L is the log-likelihood reported on iteration 0. Compute the pseudo-R>
and confirm that it is equal to that reported in the output.

11.10* In Exercise 11.4, compute the likelihood ratio statistic 2(log L — log L), confirm that it is
equal to that reported in the output, and perform the likelihood ratio test.
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MODELS USING
TIME SERIES DATA

Hitherto the analysis has been confined to cross-section data. With samples being taken from fixed
populations, it has been reasonable to assume that the classical linear regression model is the
appropriate framework. Now we switch to time series data and data generation processes. In this
chapter and the next we will suppose that the classical linear regression model remains a suitable
vehicle. However in the final chapter we shall see that analysis using times series data involves new
problems and requires a different approach.

12.1 Static Models

Much of the analysis will be illustrated with a core data set for fitting demand functions. It is drawn
from national accounts data published by the U.S. Bureau of the Census and consists of annual
aggregate data on 24 different categories of consumer expenditure for the period 1959-1994, along
with data on disposable personal income, DPI, and price index numbers for the 24 categories. The
Demand Functions data set, together with a manual giving more detailed information about it, can be
downloaded from the website. It will be updated periodically, so the time period covered will be
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Figure 12.1. Relative price series for housing services, 1959-1994 (1992=100)
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extended and possibly there may be changes to the categories of consumer expenditure. Two of the
categories, FOOD and HOUS (consumer expenditure on food and housing services, respectively) are
used as examples in the text and exercises. The other categories are intended for practical work by a
small group of students, each student working with a different category, starting with a simple
regression specification and gradually developing a more sophisticated one. We will start with a very
simple specification for the demand equation for housing services, regressing consumer expenditure
on this category, HOUS, on DPI and a price index for housing, PRELHOUS:

HOUS, = B, + B.DPI, + BsPRELHOUS, + u, (12.1)

HOUS and DPI are measured in $ billion at 1992 constant prices. PRELHOUS is an index
constructed by dividing the nominal price deflator for housing, PHOUS, by the price deflator for total
personal expenditure, PTPE, and multiplying by 100. PRELHOUS thus is a real or relative price
index that keeps track of whether housing is becoming more or less expensive relative to other types
of expenditure. It is plotted in Figure 12.1, which shows that the relative price declined by about 10
percent from the early 1960s to the late 1970s and then rose again by about the same amount.

A straightforward linear regression using EViews gives the following output (standard errors in
parentheses):

Dependent Variable: HOUS
Method: Least Squares
Sample: 1959 1994
Included observations: 36

Variable Coefficient Std. Error t-Statistic Prob

C 2.654701 28.91571 0.091808 0.9274

DPI 0.151521 0.001243 121.9343 0.0000
PRELHOUS -0.556949 0.290640 -1.916285 0.0640
R-squared 0.997811 Mean dependent var 429.3306

Adjusted R-squared 0.997679 S.D. dependent var 149.1037
S.E. of regression 7.183749 Akaike info criter 4.023298

Sum squared resid 1703.006 Schwarz criterion 4.155258
Log likelihood -120.5012 F-statistic 7522 .482
Durbin-Watson stat 0.809993 Prob (F-statistic) 0.000000

The equation implies that an increase of $1 billion in disposable personal income leads to an
increase of $0.15 billion in expenditure on housing. In other words, out of the marginal dollar, 15
cents is spent on housing. Is this a plausible figure? It is a bit difficult to tell, but certainly housing is
the largest category of consumer expenditure and one would expect a substantial coefficient. Note that
we are talking about housing services, and not investment in housing. Housing services is the value of
the services provided by the existing housing stock. In the case of rented housing, rents are taken as a
measure of the value of the services. In the case of owner-occupied housing and housing rented at a
subsidized rate, imputed rents, that is, the market rents the housing could command, are used instead.
The coefficient of PRELHOUS implies that a one-point increase in the price index leads to a reduction
of $0.56 billion in expenditure on housing. The constant term literally indicates the amount that would
be spent on housing if DPI and PRELHOUS were both 0, but obviously any such interpretation is
nonsense. If the observations referred to households, there might be some that had no income and yet
purchased housing services and other essentials with transfer payments, but here we are talking about
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aggregate data for the whole of the United States and that kind of interpretation is not sensible.
It is common to hypothesize that a constant elasticity function of the type

HOUS = B,DPI" PRELHOUS P>y (12.2)

is mathematically more appropriate for demand functions. Linearizing it by taking logarithms, one
obtains

LGHOUS = B' + B.LGDPI + B;LGPRHOUS + u, (12.3)

where LGHOUS, LGDPI and LGPRHOUS are the (natural) logarithms of HOUS, DPI and
PRELHOUS, respectively, u is the natural logarithm of the disturbance term v, ;' is the logarithm of
Bi, and B, and B; are income and price elasticities. The regression result is now as shown:

Dependent Variable: LGHOUS
Method: Least Squares
Sample: 1959 1994

Included observations: 36

Variable Coefficient Std. Error t-Statistic Prob
C -2.032685 0.322726 -6.298478 0.0000
LGDPI 1.132248 0.008705 130.0650 0.0000
LGPRHOUS -0.227634 0.065841 -3.457323 0.0015

R-squared 0.998154 Mean dependent var 5.996930
Adjusted R-squared 0.998042 S.D. dependent var 0.377702
S.E. of regression 0.016714 Akaike info criter -8.103399
Sum squared resid 0.009218 Schwarz criterion -7.971439
Log likelihood 97.77939 F-statistic 8920.496
Durbin-Watson stat 0.846451 Prob (F-statistic) 0.000000

The coefficients of LGDPI and LGPRHOUS are direct estimates of the income and price
elasticities. Is 1.13 a plausible income elasticity? Probably. It is conventional to classify consumer
expenditure into normal goods and inferior goods, types of expenditure whose income elasticities are
positive and negative, respectively, and to subdivide normal goods into necessities and luxuries, types
of expenditure whose income elasticities are less than 1 and greater than 1. Housing is obviously a
necessity, so you might expect the elasticity to be positive but less than 1. However it also has a
luxury element, since people spend more on better quality housing as their income rises. Overall the
elasticity seems to work out at about 1, so the present estimate seems reasonable.

Exercises

12.1 The results of linear and logarithmic regressions of consumer expenditure on food, FOOD, on
DPI and a relative price index series for food, PRELFOOD, using the Demand Functions data
set, are summarized below. Provide an economic interpretation of the coefficients and perform
appropriate statistical tests.
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FOOD =232.6+ 0.089 DPI— 0.534 PRELFOOD R*=0.989
(31.9) (0.002) (0.332)

LGFOOD = 2.66+ 0.61 LGDPI— 0.30 LGPRFOOD R*=0.993
(0.28) (0.01) (0.07)

12.2 Download the Demand Functions data set and associated manuals from the website. You should
choose, or be assigned by your instructor, one category of expenditure, and it may be helpful to
simplify the data set by deleting the expenditure and price variables relating to the other
categories. Construct a relative price index series for your category as indicated in Section 1 of
the Demand Functions Regression Exercises manual. Plot the series and try to explain why it
has changed over the time period.

12.3 Regress your category of expenditure on DPI and the relative price index series constructed in
Exercise 12.1. Give an economic interpretation of the regression coefficients and perform
appropriate statistical tests.

12.4 Regress the logarithm of expenditure on your category on LGDPI and the logarithm of the
relative price series. Give an economic interpretation of the regression coefficients and perform
appropriate statistical tests.

12.5* Perform a Box—Cox test to determine whether there is a significant difference in the fit of the
linear and logarithmic regressions for your category of expenditure.

12.6 Sometimes a time trend is included in a regression as an explanatory variable, acting as a proxy
for some gradual change not associated with income or price. Changing tastes might be an
example. However, in the present case the addition of a time trend might give rise to a problem
of multicollinearity because it will be highly correlated with the income series and perhaps also
the price series. Calculate the correlations between the TIME variable in the data set, LGDPI,
and the logarithm of expenditure on your category. Regress the logarithm of expenditure on
your category on LGDPI, the logarithm of the relative price series, and TIME (not the logarithm
of TIME). Provide an interpretation of the regression coefficients, perform appropriate
statistical tests, and compare the regression results with those of the same regression without
TIME.

12.2 Dynamic Models

Next, we will introduce some simple dynamics. One might suppose that some types of consumer
expenditure are largely determined by current income and price, but this is not so for a category such
as housing that is subject to substantial inertia. We will consider specifications in which expenditure
on housing depends on lagged values of income and price. A variable X lagged one time period has
values that are simply the previous values of X, and it is conventionally referred to as X(-1).
Generalizing, a variable lagged s time periods has the X values s periods previously, and is denoted
X(—s). Major regression applications adopt this convention and for these there is no need to define
lagged variables separately. Table 12.1 shows the data for LGDPI, LGDPI(—-1) and LGDPI(-2).
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TaBLE 12.1

Current and Lagged Values of the
Logarithm of Disposable Personal Income

Year LGDPI LGDPI(-1) LGDPI(-2)
1959 5.2750 - -
1960 5.3259 5.2750 -
1961 5.3720 5.3259 5.2750
1962 5.4267 5.3720 5.3259
1963 5.4719 5.4267 5.3720
1964 5.5175 5.4719 5.4267
1965 5.5706 5.5175 5.4719
1987 6.3689 6.3377 6.3119
1988 6.3984 6.3689 6.3377
1989 6.4210 6.3984 6.3689
1990 6.4413 6.4210 6.3984
1991 6.4539 6.4413 6.4210
1992 6.4720 6.4539 6.4413
1993 6.4846 6.4720 6.4539
1994 6.5046 6.4846 6.4720
TABLE 12.2

Alternative Dynamic Specifications, Expenditure on Housing Services

Variable (1) ) (3 (€] Q)

LGDPI 113 ] ) 0.38 0.33
(0.01) (0.15) 0.14)

LGDPI(-1) ) 1.10 ) 0.73 0.28
(0.01) (0.15) 0.21)

LGDPI(-2) ) ) 1.07 ) 0.48
(0.01) (0.15)

LGPRHOUS -0.23 ) ) -0.19 -0.13
(0.07) (0.08) (0.19)

LGPRHOUS(-1) ] 020 ) 0.14 0.25
(0.06) (0.08) (0.33)

LGPRHOUS(-2) ) ) -0.19 ) -0.33
(0.06) (0.19)
R? 0.998 0.999 0.998 0.999 0.999
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Note that obviously there is a very high correlation between LGDPI, LGDPI(-1) and LGDPI(-2), and
this is going to cause problems.

The first column of Table 12.2 presents the results of a logarithmic regression using current
income and price. The second and third columns show the results of regressing expenditure on
housing on income and price lagged one and two time periods, respectively. It is reasonable to
hypothesize that expenditure on a category of consumer expenditure might depend on both current and
lagged income and price. The fourth column shows the results of a regression using current income
and price and the same variables lagged one time period. The fifth column adds the same variables
lagged two time periods, as well.

The first three regressions are almost identical. This is because LGDPI, LGDPI(—-1) and
LGDPI(-2) are very highly correlated. The last two regressions display the classic symptoms of
multicollinearity. The point estimates are unstable and the standard errors become much larger when
current and lagged values of income and price are included as regressors. For a type of expenditure
like housing, where one might expect long lags, this is clearly not a constructive approach to
determining the lag structure.

A common solution to the problem of multicollinearity is to hypothesize that the dynamic process
has a parsimonious lag structure, that is, a lag structure that can be characterized with few parameters.
One of the most popular lag structures is the Koyck distribution, which assumes that the coefficients
of the explanatory variables have geometrically declining weights. We will look at two such models,
the adaptive expectations model and the partial adjustment model.

Exercises

12.7 Give an economic interpretation of the coefficients of LGDPI, LGDPI(-1), and LGDPI(-2), in
column 5 of Table 12.2.

12.8 To allow for the possibility that expenditure on your category is partly subject to a one-period
lag, regress the logarithm of expenditure on your commodity on LGDPI, the logarithm of your
relative price series, and those two variables lagged one period. Repeat the experiment adding
LGDPI(-2) and the logarithm of the price series lagged two periods. Compare the regression
results, paying attention to the changes in the regression coefficients and their standard errors.

12.3 The Adaptive Expectations Model

The modeling of expectations is frequently an important and difficult task of the applied
economist using time series data. This is especially true in macroeconomics, in that investment,
saving, and the demand for assets are all sensitive to expectations about the future. Unfortunately,
there is no satisfactory way of measuring expectations directly for macroeconomic purposes.
Consequently, macroeconomic models tend not to give particularly accurate forecasts, and this make
economic management difficult.

As a makeshift solution, some models use an indirect technique known as the adaptive
expectations process. This involves a simple learning process in which, in each time period, the actual
value of the variable is compared with the value that had been expected. If the actual value is greater,
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the expected value is adjusted upwards for the next period. If it is lower, the expected value is
adjusted downwards. The size of the adjustment is hypothesized to be proportional to the discrepancy
between the actual and expected value.

If X is the variable in question, and X, is the value expected in time period ¢ given the
information available at time period -1,

X=X/ =MX,-X/) (0<Ai<] (12.4)

t+1

This can be rewritten

X, =X, +(1-)X, (©O<A<D (12.5)

+1 =

which states that the expected value of X in the next time period is a weighted average of the actual
value of X in the current time period and the value that had been expected. The larger the value of A,
the quicker the expected value adjusts to previous actual outcomes.

For example, suppose that you hypothesize that a dependent variable, Y, is related to the expected

value of the explanatory variable, X, in year t+1, X /,;:

Y, =0B,+B,X/, +u,. (12.6)

t+1

e

11> which is unobservable and must somehow be replaced by

(12.6) expresses Y, in terms of X
observable variables, that is, by actual current and lagged values of X, and perhaps lagged values of Y.

We start by substituting for X/, using (12.5):

Y, =B, + By (X, + (1= )X ¢ )+,
:ﬁl +ﬁ2Mt +ﬁ2(1_2')Xze tu,

(12.7)
Of course we still have unobservable variable X, as an explanatory variable, but if (12.5) is true
for time period ¢, it is also true for time period #1:
X/ =X, +(0-1)X/,. (12.8)
Substituting for X/ in (12.7), we now have
Y, =B+ BodX, + BA0=DX, + By (1=’ X[ +u, (12.9)
After lagging and substituting s times, the expression becomes

Y, =B, + BoAX, + B,A0-A)X, + BA0-A)1 X, , +...

(12.10)
+ B A=) X+ B A=) X, +u,
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Now it is reasonable to suppose that A lies between 0 and 1, in which case (1 — A) will also lie between
0 and 1. Thus (1 — A)' becomes progressively smaller as s increases. Eventually there will be a point

where the term f3,(1-24)* X, ,, is so small that it can be neglected and we have a model in which all
the variables are observable.

A lag structure with geometrically-declining weights, such as this one, is described as having a
Koyck distribution. As can be seen from (12.10), it is highly parsimonious in terms of its
parameterization, requiring only one parameter more than the static version. Since it is nonlinear in
the parameters, OLS should not be used to fit it, for two reasons. First, multicollinearity would almost
certainly make the estimates of the coefficients so erratic that they would be worthless — it is precisely
this problem that caused us to search for another way of specifying a lag structure. Second, the point
estimates of the coefficients would yield conflicting estimates of the parameters. For example,

suppose that the fitted relationship began

Y, =101 + 0.60X, + 0.45X, 1+ 0.20X, 5 + ... (12.11)

Relating the theoretical coefficients of the current and lagged values of X in (12.10) to the estimates in
(12.11), one has byl = 0.60, bI(1 — 1) = 0.45, and b,I(1 - l)2 =0.20. From the first two you could infer
that b, was equal to 2.40 and [ was equal to 0.25 — but these values would conflict with the third
equation and indeed with the equations for all the remaining coefficients in the regression.

Instead, a nonlinear estimation technique should be used instead. Most major regression
applications have facilities for performing nonlinear regressions built into them. If your application
does not, you could fit the model using a grid search. It is worth describing this technique, despite the
fact that it is obsolete, because it makes it clear that the problem of multicollinearity has been solved.
We rewrite (12.10) as two equations:

Y, = Bi+ Bz +u, (12.12)
Zi= AX,+ A =D X+ A=A X+ A1 =2 X5 ... (12.13)

The values of Z, depend of course on the value of A. You construct ten versions of the Z, variable
using the following values for A: 0.1, 0.2, 0.3, ..., 1.0 and fit (12.12) with each of them. The version
with the lowest residual sum of squares is by definition the least squares solution. Note that the
regressions involve a regression of Y on the different versions of Z in a simple regression equation and
so the problem of multicollinearity has been completely eliminated.

Table 12.3 shows the parameter estimates and residual sums of squares for a grid search where
the dependent variable was the logarithm of housing services and the explanatory variables were the
logarithms of DPI and the relative price series for housing. Eight lagged values were used. You can
see that the optimal value of A is between 0.4 and 0.5, and that the income elasticity is about 1.13 and
the price elasticity about —0.32. If we had wanted a more precise estimate of A, we could have
continued the grid search with steps of 0.01 over the range from 0.4 to 0.5. Note that the implicit
income coefficient for X, s, BoA(1 — A%, was about 1.13x0.5° = 0.0022. The corresponding price
coefficient was even smaller. Hence in this case eight lags were more than sufficient.
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TaBLE 12.3

Logarithmic Regression of Expenditure on Housing Services on
Disposable Personal Income and a Relative Price Index, Assuming
an Adaptive Expectations Model, Fitted Using a Grid Search

A b, s.e.(by) b s.e.(b3) RSS
0.1 1.67 0.01 -0.35 0.07 0.001636
0.2 1.22 0.01 -0.28 0.04 0.001245
0.3 1.13 0.01 -0.28 0.03 0.000918
0.4 1.12 0.01 -0.30 0.03 0.000710
0.5 1.13 0.01 -0.32 0.03 0.000666
0.6 1.15 0.01 -0.34 0.03 0.000803
0.7 1.16 0.01 -0.36 0.03 0.001109
0.8 1.17 0.01 -0.38 0.04 0.001561
0.9 1.17 0.01 -0.39 0.04 0.002137
1.0 1.18 0.01 -0.40 0.05 0.002823

Dynamics in the Adaptive Expectations Model

As you can see from (12.10), X,, the current value of X, has coefficient ;4 in the equation for Y,. This
is the short-run or impact effect of X on Y. At time ¢, the terms involving lagged values of X are
already determined and hence effectively form part of the intercept in the short-run relationship.
However we can also derive a long-run relationship between Y and X by seeing how the equilibrium
value of ¥ would be related to the equilibrium value of X, if equilibrium were ever achieved. Denoting

equilibrium Y and X by Y and X, respectively, in equilibrium Y, =Y and
X,=X,,=X,,=..=X. Substituting into (12.10), one has

Y =B+ BoAX + BoA1-M)X + BAl— A1)’ X +...
=B, + B, X[A+A1-A)+A1-21)* +..] (12.14)
:ﬁl +ﬁ2}?

To see the last step, write
S=A+A1 =)+ A1 -7 ... (12.15)
Then
1-DS =21 -+ A1 -+ A1 -1 ... (12.16)

Subtracting (12.16) from (12.15),
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S—(1-M)S= 2 (12.17)

and hence S is equal to 1. Thus the long-run effect of X on Y is given by f3,.

An alternative way of exploring the dynamics of an adaptive expectations model is to perform
what is known as a Koyck transformation. This allows us to express the dependent variable in terms
of a finite number of observable variables: the current values of the explanatory variable(s) and the
dependent variable itself, lagged one time period. We start again with the original equations and
combine them to obtain (12.20):

Y, =B +B,X/, +u, (12.18)
X =AX, +(1-)X¢ (12.19)

41—

Y, =B, + B, (X, + A= )X ! )+u,

(12.20)
=B+ BoAX, + B(1- )X +u,
Now if (12.18) is true for time ¢, it is also true for time 7—1:
Y =B +B,X +u,, (12.21)
Hence
B, X/ =Y_,-B —u, (12.22)
Substituting this into (12.20), we now have
Y, =B, +B,AX, +(1-M)X,_, - B, —u,_,)+u, (12.23)

=B A+(A-A)Y,  + B,AX, +u, —(1—-A)u,_,

As before the short-run coefficient of X is 4, the effective intercept for the relationship being
BiA+ (1 — A)Y,; at time ¢. In equilibrium, the relationship implies

Y =B A+1-)Y +B,AX (12.24)

and so
Y=8+8,X (12.25)

Hence again we obtain the result that 3, gives the long-run effect of X on Y.

We will investigate the relationship between the short-run and long-run dynamics graphically.
We will suppose, for convenience, that 3, is positive and that X increases with time, and we will
neglect the effect of the disturbance term. At time ¢, Y, is given by (12.23). Y, has already been
determined, so the term (1 — )Y, is fixed. The equation thus gives the short-run relationship between
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oA+ (1-2) Yus

oA+ (1-4) Yue
oA+ (1-4) Ye

o+ (1-4)Y:

oA+ (1-2) Yii

Xt X 1 Xt+2 Xt+3 Xt+4 X

Figure 12.2. Short-run and long-run dynamics in the adaptive expectations model

Y, and X,. [BiA+ (1 — V)Y, 4] is effectively the intercept and ;A is the slope coefficient. When we
come to time #+1, Y}, is given by

Yi = ﬁll + ﬁzlxﬁl +( - A')Yt (12.26)

and the effective intercept is now [BiA + (1 — A)Y,]. Since X is increasing, Y is increasing, so the
intercept is larger than that for Y, and the short-run relationship has shifted upwards. The slope is the
same as before, foA. Thus two factors are responsible for the growth of Y: the direct effect of the
increase in X, and the gradual upward shift of the short-run relationship. Figure 12.2 shows the
outcomes for time ¢ as far as time +4. You can see that the long-run relationship is steeper than the
short-run one.

Example: Friedman’s Permanent Income Hypothesis

Without doubt the most celebrated application of the adaptive expectations model is Friedman’s use of
it when fitting an aggregate consumption function using time series data. In the early years after the
Second World War, econometricians working with macroeconomic data were puzzled by the fact that
the long-run average propensity to consume seemed to be roughly constant, despite the marginal
propensity to consume being much lower. A model in which current consumption was a function of
current income could not explain this phenomenon and was therefore clearly too simplistic. Several
more sophisticated models that could explain this apparent contradiction were developed, notably
Friedman's Permanent Income Hypothesis, Brown's Habit Persistence Model (discussed in the next
section), Duesenberry's Relative Income Hypothesis and the Modigliani-Ando—Brumberg Life Cycle
Model.

Under the Permanent Income Hypothesis, permanent consumption, C”, is proportional to

permanent income, YtP :
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c/=By" (12.27)

Actual consumption, C;, and actual income, Y,;, also contain transitory components, C,T and Y,T
respectively:

c,=cl+c! (12.28)

t

Y, =Y"+Y" (12.29)

t

It is assumed, at least as a first approximation, that the transitory components of consumption and
income have expected value 0 and are distributed independently of their permanent counterparts and

of each other. Substituting for C in (12.27) using (12.28) one has
C,=By"+cC’ (12.30)

We thus obtain a relationship between actual consumption and permanent income in which C; plays

the role of a disturbance term, previously lacking in the model.

Earlier, when we discussed the permanent income hypothesis in the context of cross-section data,
the observations related to households. When Friedman fitted the model, he actually used aggregate
time series data. To solve the problem that permanent income is unobservable, he hypothesized that it
was subject to an adaptive expectations process in which the notion of permanent income was updated
by a proportion of the difference between actual income and the previous period’s permanent income:

v -yl =My, -v5) (12.31)

t

Hence permanent income at time ¢ is a weighted average of actual income at time ¢ and permanent
income at time 7—1:

YvP =AY, +(1-)Y” (12.32)

Friedman used (12.32) to relate permanent income to current and lagged values of income. Of

course it cannot be used directly to measure permanent income in year ¢ because we do not know A
and we have no way of measuring ¥,",. We can solve the second difficulty by noting that, if (12.32)

holds for time ¢, it also holds for time 7—1:
YE =AYy +(1-1Yr, (12.33)
Substituting this into (12.28), we obtain

Y' =AY, + AQ-1)Y,  +(1-21)°Y}, (12.34)
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This includes the unmeasurable term Y,”,, but we can deal with it by lagging (12.28) two periods
and substituting, thus obtaining Y,P in terms of Y, Y., Y.» and Y,f ;. Continuing this process

indefinitely, we can write ¥,” as a weighted sum of current and past measured income:
Y/ =AY, + A=Y, +AA=1)Y,_, + A1 = A1)V, +... (12.35)

Provided that A lies between 0 and 1, a reasonable assumption, (1 — A)" is a decreasing function of
s and eventually the weights attached to the lagged values of Y become so small that they can be
neglected.

This still leaves us with the problem of estimating A. Friedman’s solution was to use a grid
search, calculating the permanent income time series for a range of values of A between 0 and 1, and
regressing consumption on each permanent income series. He then chose that value of A that produced
the series for Y” that gave him the best fit. Effectively, of course, he was fitting the nonlinear model

C,=BoAY, + A1 = A)Y . + BAl = 1) Yn + ..+ C" (12.36)
The dynamic properties of the model are as illustrated in Figure 12.1. Mathematically they are
best analyzed by performing the Koyck transformation on the model. This could be done on the lines

of equations (12.21) — (12.23) above, or by lagging (12.36) one period and multiplying through by (1 —
A):

(1 =)Cri = LA = V)Y g + BAL = D) Yia + LAl = A YVis + ..k (1 = H)CT (12.37)
Subtracting (12.37) from (12.36), one has
Ci—(1-1)C =AY, +C =1 - 1C"" (12.38)
and so
Ci=BAY,+(1=2)C+C" = (1 - 1)C"™" (12.39)
The short-run marginal propensity to consume is 5,4 and the long run propensity is B,. Since A is
less than 1, the model is able to reconcile a low short-run marginal propensity to consume with a

higher long-run average propensity. The dynamics of the model are as shown in abstract in Figure
12.2.

Exercise

12.9% The output below shows the result of fitting the model

LGFOOD = B, + BALGDPI + B:A(1 — ALGDPI(-1)
+ BoA(1 — A)’LGDPI(-2) + BsALGPRFOOD + u
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using the data on expenditure on food in the Demand Functions data set. LGFOOD and
LGPRFOOD are the logarithms of expenditure on food and the relative price index series for
food. C(1), C(2), C(3), and C(4) are estimates of f;, B, A, and [, respectively. Explain how
the regression equation could be interpreted as an adaptive expectations model and discuss the
dynamics implicit in it, both short-run and long-run. Should the specification have included
further lagged values of LGDPI?

Dependent Variable: LGFOOD

Method: Least Squares

Sample (adjusted) : 1961 1994

Included observations: 34 after adjusting endpoints

Convergence achieved after 848 iterations

LGFOOD=C (1) +C(2) *C(3) *LGDPI+C(2) *C(3) * (1-C(3)) *LGDPI (-1)+C(2)
*C(3)*(1-C(3))*(1-C(3))*LGDPI(-2)+C(4)*LGPRFOOD

CoefficientStd. Errort-Statistic Prob.

Cc(1) 2.666180 0.316754 8.417199 0.0000
c(2) 0.607542 0.013005 46.71599 0.0000
C(3) 0.863231 0.346065 2.494419 0.0184
C(4) -0.303995 0.072186 -4.211252 0.0002
R-squared 0.991081 Mean dependent var 6.132194
Adjusted R-squared 0.990190 S.D. dependent var 0.179564
S.E. of regression 0.017785 Akaike info criter-5.110752
Sum squared resid 0.009490 Schwarz criterion -4.931180
Log likelihood 90.88279 F-statistic 1111.264
Durbin-Watson stat 0.604156 Prob (F-statistic) 0.000000

12.4 The Partial Adjustment Model

In the partial adjustment model it is assumed that the behavioral equation determines the desired

(or "target") value, Y,*, of the dependent variable, rather than the actual value, Y;:

Y, =B, +B,X, +u, (12.40)

It is then assumed that the actual increase in the dependent variable, Y; — Y., is proportional to the

discrepancy between the desired value and the previous value, ¥, — ¥, ;:

Y, =Y =AY, ~Y.) (O<A<) (12.41)
This may be rewritten
Y, =AY +(1-A4)Y,_, (12.42)

so it can be seen that Y, is a weighted average of the current desired value and the previous actual
value. The higher is the value of A, the more rapid is the adjustment process. If A is equal to 1, Y, is
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equal to ¥, and there is full adjustment in one period. At the other extreme, if A is equal to 0, ¥, does
not adjust at all.

Substituting for Y,* from the target relationship, one obtains

Y, =AB, + Bo X, +u, ) +(1-1)Y,

12.43
=B A+ [AX, +(1-A)Y, | +u, ( )

Thus the parameters f;, B, and A of the behavioral model can be estimated by regressing Y, on X, and
Y, ;. The model relates Y to the current value of X and the lagged value of itself, and so has the same
structure as the Koyck-transformed version of the adaptive expectations model. It follows that its
dynamics are exactly the same. The coefficient of Y, ; yields an estimate of (1 — A) and hence of A, the
speed of adjustment. The coefficient of X, gives the short-run effect of X on Y and also, when divided
by the estimate of A, the long-run effect.

Example: Brown’s Habit-Persistence Model of Aggregate Consumption

The first attempts by econometricians to fit an aggregate consumption function naturally used the
simple static model

C, = ﬁl + ﬁzY, + u; (1244)

With estimates of 3, well below 1, this model implied that the average propensity to consume should
fall.  Nevertheless long-run data showed no tendency for this to happen. Consequently
macroeconomists started looking for more elaborate models that could reconcile these apparently
contradictory facts. Friedman’s Permanent Income Hypothesis was one such model. Another was

Brown’s Habit-Persistence Model (Brown, 1952). In this model, desired consumption C, was related

to wage income, W,, and nonwage income, NW,:
C, =B, +B,W, +B;NW, +0A+u, (12.45)

Brown used aggregate data for Canada for the years 1926-1949, omitting the war years 1942—
1945, A being a dummy variable equal to O for the pre-war period and 1 for the post-war period. The
division of income into wage income and nonwage income follows the observation of Michael Kalecki
that the marginal propensity to consume out of wage income was likely to be much higher than that
out of nonwage income, for two reasons. First, nonwage income tends to be received by relatively
rich households with higher savings rates than poorer ones. Second, in a market economy, much
nonwage income originates as company profits, and companies normally pass on only part of their
profits as dividends to shareholders, retaining the remainder for investment in the business.

Because households are slow to adapt their spending patterns in response to changes in income,
Brown hypothesized a partial adjustment process for actual consumption:

C,—C,=MC, -C, ) (12.46)
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From this one obtains current consumption as the weighted average of desired consumption and
consumption in the previous time period:

C,=AC, +(1-2)C, (12.47)
Substituting for C,* from (12.45), one then has an equation in observable variables:

Ct :l(ﬁl +ﬁ2Wz +ﬁ3NWr +A+Mz)+(1_2')cz—l (12 48)
= BiA+ BoAW, + BiANW, +(1-A)C,_, + 2A + Au, '
Fitting the model with a simultaneous equations technique, Brown obtained (¢ statistics in
parentheses):

C, = 0.90 +0.61W, + 0.28NW, + 0.22C,; + 0.69A (12.49)
4.8) (714)  (4.2) 2.8) (4.8)

The variables were all measured in Canadian $ billion at constant prices of the 1935-1939 period.
From the regression one obtains short-run marginal propensities to consume of 0.61 and 0.28 for wage
income and nonwage income, respectively. The coefficient of C,; indicates that 0.78 of the
discrepancy between desired and actual income is eliminated in one year. Dividing the short-run
marginal propensities by the speed of adjustment, one obtains long-run propensities to consume of
0.78 and 0.36 for wage income and nonwage income, respectively.

Comparison of the Friedman and Brown Models

Despite the fact that their theoretical frameworks are completely different, one concerned with the
future and expectations, the other concerned with the past and inertia, the Friedman model, in its
Koyck-transformed form (12.39), and the habit-persistence model (12.48) are virtually identical. They
both incorporate short-run and long-run propensities to consume and a speed of adjustment. The only
difference in the variable specification is that the Brown model divides income into wage income and
nonwage income. This is a useful refinement that should be applied to Friedman model as well.
Indeed it is now a standard feature of empirical models. The Friedman model does not have an
intercept, but that is a minor empirical detail. The disturbance term in the Friedman model is different
from that in the Brown model, and its structure may cause problems, but as will be seen in the next
chapter, that is likewise not an important difference. This is an example of the problem of
observationally-equivalent theories, where two or more theories can be used to fit the same data set in
the same way and there is no possibility of discriminating between them.

Exercises

12.10 Expenditure on housing services, HOUS, was regressed on DPI, the relative price index for
housing, PRELHOUS, and the lagged value of HOUS, HOUS(-1), for the period 1959-1994
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12.11

12.12*

12.13*

for the United States using the Demand Functions data set. The regression was repeated in
logarithmic form, LGHOUS being regressed on LGDPI, LGPRHOUS, and LGHOUS(-1), with
the results summarized below. Give an interpretation of the regression coefficients, paying
attention to the dynamics implicit in the model.

HOUS = 19.24 + 0.05 DPI — 0.28 PRELHOUS + 0.69 HOUS(-1) R*=0.9998
(10.14) (0.01) (0.10) (0.04)

LGHOUS = -0.39 + 0.32 LGDPI — 0.07 LGPRHOUS +0.70 LGHOUS(-1) R’=0.9998
(0.15) (0.05) (0.02) (0.05)

Perform regressions parallel to those reported in Exercise 12.10 for your category of
expenditure in the Demand Functions data set. Give an interpretation of the regression
coefficients, paying attention to the dynamics implicit in the model.

How would you test Kalecki's assertion concerning the coefficients of wage and nonwage
income, if you had access to Brown's data set?

In his classic study Distributed Lags and Investment Analysis (1954), Koyck investigated the
relationship between investment in railcars and the volume of freight carried on the U.S.
railroads using data for the period 1884—-1939. Assuming that the desired stock of railcars in
year ¢ depended on the volume of freight in year #~1 and year /~2 and a time trend, and
assuming that investment in railcars was subject to a partial adjustment process, he fitted the
following regression equation using OLS (standard errors and constant term not reported):

IAI =0.077 F,.; + 0.017F,, — 0.00337 - 0.110K, , R*=0.85
Provide an interpretation of the equation and describe the dynamic process implied by it.

(Note: 1Tt is best to substitute K, — K, ; for I, in the regression and treat it as a dynamic
relationship determining K,.)

12.5 Prediction

Suppose that you have fitted a model

Y, =B+ BX +u (12.50)
to a sample of T time series observations (=1, ..., T):
Y, = by +boX, (12.51)

Given any post-sample period value of X, say Xz, you are now in a position to predict the

corresponding value of Y:
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A

Yryp = b1+ 02Xy (12.52)

There are two reasons why such predictions may be important to you. First, you may be one of
those econometricians whose business it is to peer into the economic future. Some econometricians
are concerned with teasing out economic relationships with the aim of improving our understanding of
how the economy works, but for others this is only a means to the more practical objective of trying to
anticipate what will happen. In most countries macroeconomic forecasting has a particularly high
profile, teams of econometricians being employed by the Ministry of Finance or other branches of
government, private financial institutions, universities and research institutes, and their predictions are
actively used for framing public policy, for commenting on it, or for business purposes. When they
are published in the press, they typically attract far more attention than most other forms of economic
analysis, both on account of their subject matter and because, unlike most other forms of economic
analysis, they are easily understood by the ordinary citizen. Even the most innumerate and
nontechnically minded person can have a good understanding of what is meant by estimates of the
future levels of unemployment, inflation, etc.

There is, however, a second use of econometric prediction, one that has made it of concern to
econometricians, irrespective of whether they are involved in forecasting. It provides a method of
evaluating the robustness of a regression model that is more searching than the diagnostic statistics
that have been used so far.

Before we go any further, we will have to clarify what we mean by prediction. Unfortunately, in
the econometric literature this term can have several slightly different meanings, according to the
status of Xr,, in (12.52). We will differentiate between ex-post predictions and forecasts. This
classification corresponds to what seems to be the most common usage, but the terminology is not
standard.

Ex-Post Predictions

We will describe Y.

r+p as an ex-post prediction if Xz, is known. How can this be the case? In
general, econometricians make use of all available data, to maximize the sample size and hence
minimize the population variances of their estimators, so Xy will simply be the most recent recorded
value of X available at the time of running the regression. Nevertheless, there are two circumstances
when Xr., will be known as well: when you have waited p or more periods after running the
regression, and when you have deliberately terminated the sample period early so that you have a few
of the most recent observations left over. The reason for doing this, as we shall see in the next section,
is to enable you to evaluate the predictive accuracy of the model without having to wait.

For example, referring again to the price inflation/wage inflation model of equation (3.39),

suppose that we had fitted the equation

p =1.0+0.80w (12.53)

during the sample period, where p and w are the percentage annual rates of price inflation and wage
inflation, respectively, and suppose that we know that the rate of wage inflation was 6 percent in some
prediction period year. Then we can say that the ex-post prediction of the rate of wage inflation is 5.8
percent. We should, of course, be able to compare it immediately with the actual rate of price inflation
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for that year, and hence we can evaluate the prediction error, which is just the difference between

actual outcome and the predicted value. In general, if Y7., is the actual outcome, and fﬂ » the

predicted value, the forecast error is defined as f7., where
frip= Yrp— Yy, (12.54)

Why is there a prediction error? For two reasons. First, I?T +p has been calculated using the

parameter estimates, b, and b,, instead of the true values. And second, YT 4+, cannot take account of

the disturbance term ur,,, which is a component of Yr,,. In the discussion that follows, we shall
assume that the data include 74P observations on the variables, the first 7 (the sample period) being
used to fit the regression and the last P (the prediction period or prediction interval) being used to
check predictive accuracy.

Example

Suppose that when we fitted the demand function for housing using the Demand Functions data set,
we had only used the first 32 observations in the sample, that is, the observations for 1959-90,
reserving the last four observations for checking predictions. The fitted equation for 1959-90 is
(standard errors in parentheses):

LGHOUS =-1.96 +1.13LGDPI — 0.24LGPRHOUS R*=0.998 (12.55)
(0.39) (0.01) (0.08)

The predicted values of LGHOUS for the period 1991-94, using the equation and the actual values of
disposable personal income and the relative price of housing services for those years, are shown in
Table 12.4, together with the actual outcomes and the prediction errors. The predictions, like the basic
data, are in logarithmic form. For convenience, Table 12.4 also shows the absolute values, derived
from the logarithmic values, expressed in $ billion at 1992 prices.

We can see that in this case the predicted value of expenditure on housing services is roughly 2
percent below the actual outcome in 1991, and very close in the remaining three years. Is this
predictive performance satisfactory? We shall see in the next section.

TaBLE 12.4

Predicted and Actual Expenditure on Housing Services, 1991-1994

Logarithms Absolute equivalent
Year ~ LGHOUS  LGHOUS  Error HOUS ~ HOUS  Error
1991 6.4539 6.4734 0.0166 635.2 624.8 10.4
1992 6.4720 6.4697 0.0023 646.8 645.3 1.5
1993 6.4846 6.4820 0.0026 655.0 653.3 1.7

1994 6.5046 6.5073 —-0.0027 668.2 670.0 -1.8




MODELS USING TIME SERIES DATA 20

Forecasts

If you are willing to predict a particular value of Y7,,, without knowing the actual value of Xr.,, you
are said to be making a forecast, at least in the terminology of this text. The macroeconomic
divinations published in the press are usually forecasts in this sense. Policymakers, and indeed the
general public, are not much interested in two-handed economists (ones who say "on the one hand this
... but if ... then on the other hand that ..."). They want the best possible single-point estimates,
perhaps with some indication of the likely margin of error, often not even that. Forecasts are less
accurate than predictions because they are subject to an additional source of error, the error in the
prediction of Xr,,. Obviously, those making forecasts normally attempt to minimize the additional
error by modeling the behavior of X as carefully as possible, in some instances constructing a separate
model for it, in others bringing the equation determining Y and the equation determining X together,
usually with other relationships as well, in a simultaneous equations model of the type discussed in
Chapter 10.

Properties of Least Squares Predictors

In the discussion that follows, we will be concerned with predictions rather than forecasts, the reason
being that we are in a position to make statements about the properties of the regression coefficients
and the disturbance term, but not about X if its values are not known. First, there is some good news.
If Y7, is generated by the same process as the sample period values of Y (that is, according to equation

(12.50) with ur., conforming to the Gauss—Markov conditions), and if we make our prediction };ﬂ »

using equation (12.52), the prediction error fr., will have mean 0 and minimum variance.
The first property is easily demonstrated:

E(fr,))=E(Yy,,)—E(Y,,)
=E(B, +[32XT+p tup,,)—EMb +b,X 7, ,)
=p, + [32XT+p +E(uT+p)—E(bl)— XT+pE(b2)
=B+ B:Xrsp — B~ B Xpy, =0

(12.56)

since E(by) = Bi, E(b,) = B>, and E(urs,) = 0. We will not attempt to prove the minimum variance
property (for a proof, see Johnston and Dinardo, 1997). Both of these properties carry over to the
general case of multiple regression analysis.

In the simple regression case, the population variance of fr., is given by

X, —-X)*
c; = 1+l+(””— o’ (12.57)
T+p n nVar(X)

where X and Var(X) are the sample period mean and variance of X. Unsurprisingly, this implies that,
the farther is the value of X from its sample mean, the larger will be the population variance of the
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prediction error. It also implies, again unsurprisingly, that, the larger is the sample, the smaller will be
the population variance of the prediction error, with a lower limit of 0'3. As the sample becomes
large, b, and b, will tend to their true values (provided that the Gauss—Markov conditions hold), so the

only source of error in the prediction will be ur,,, and by definition this has population variance 0'3 .

Confidence Intervals for Predictions

We can obtain the standard error of the prediction error by replacing ¢ in (12.57) by s and taking
the square root. Then (Yr., — fﬂ » )/standard error follows a ¢ distribution with the number of degrees

of freedom when fitting the equation in the sample period. Hence we can derive a confidence interval
for the actual outcome, Y7,
Y,

- oy fort XS.. (12.58)

— leri X8.€. < Ypy, < Y,

where ¢ is the critical level of 7, given the significance level selected and the number of degrees of
freedom, and s.e. is the standard error of the prediction. Figure 12.3 depicts in general terms the
relationship between the confidence interval for prediction and the value of the explanatory variable.

In multiple regressions, the counterpart to (12.57) is much more complicated and is best handled
with matrix algebra. Fortunately, there is a simple trick that you can use to get the computer to
calculate the standard errors for you. Let the sample period be denoted 1, ..., T and the prediction
period T+1, ..., T+P. You run the regression for the sample and prediction periods combined, adding
a (different) dummy variable to each of the prediction period observations. This means adding to the
model a set of dummy variables Dz, ..., Dzp, where Dr,, is defined to be O for every observation
except observation T+p, for which it is 1. It can be shown (Salkever, 1976; Dufour, 1980) that the

Y:
upper limit of confidence interval
confidence interval
for YT+p )}np _ b1 + b2X7+p
YT+p
lower limit of
confidence interval
| |
X XT+p Xt

Figure 12.3. Confidence interval for a projection
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estimates of the nondummy coefficients and their standard errors will be exactly the same as in the
regression confined to the sample period only. The computer uses the dummy variables to obtain a
perfect fit in each observation in the prediction period, and it does this by setting the coefficient of the
dummy variable equal to the prediction error as defined above. The standard error of this coefficient
is equal to the standard error of the prediction error.

Example

Dependent Variable: LGHOUS
Method: Least Squares
Sample: 1959 1994

Included observations: 36

Variable CoefficientStd. Errort-Statistic Prob
c -1.959273 0.388319 -5.045522 0.0000
LGDPI 1.129984 0.010942 103.2737 0.0000
LGPRHOUS -0.239828 0.075874 -3.160890 0.0037
D1991 0.016561 0.018991 0.872042 0.3903
D1992 0.002325 0.019033 0.122150 0.9036
D1993 0.002604 0.019109 0.136289 0.8925
D199%4 -0.002732 0.019268 -0.141796 0.8882
R-squared 0.998206 Mean dependent var 5.996930
Adjusted R-squared 0.997835 S.D. dependent var 0.377702
S.E. of regression 0.017576 Akaike info criter-5.071925
Sum squared resid 0.008958 Schwarz criterion -4.764019
Log likelihood 98.29465 F-statistic 2689.096
Durbin-Watson stat 0.838021 Prob (F-statistic) 0.000000

The output shows the result of a logarithmic regression of housing services on income and relative
price with dummy variables for the years 1991 — 1994. The coefficients of the dummy variables give
the forecast errors presented in Table 12.4. The predicted logarithm of expenditure on housing
services in 1991 in Table 12.4 was 6.4374. From the output we see that the standard error of the
prediction error for that year was 0.0190. With 29 degrees of freedom, the critical value of ¢ at the 5
percent significance level is 2.045, so we obtain the following 95 percent confidence interval for the
prediction for that year:

6.4374 —2.045%x0.0190 < Y < 6.4374 + 2.045%x 0.0190 (12.59)
that is,
6.3985 <Y <6.4763 (12.60)

The confidence interval does include the actual outcome, 6.4539, and thus, for that year at least, the
prediction was satisfactory. The same is true for the other years in the prediction period.
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Exercise

12.14 Use the Salkever indirect method to compute forecasts and their standard errors for the
logarithmic demand function for your category of expenditure. Add dummy variables to the last
four observations and hence obtain the prediction errors for these years, given a regression
based on the first 32 observations. Subtract these from the actual outcomes to obtain the
forecasts. Derive a confidence interval for the forecast for 1994.

12.6 Stability Tests

Stability tests of a regression model are tests designed to evaluate whether the performance of a model
in a prediction period is compatible with its performance in the sample period used to fit it. There are
two principles on which stability tests can be constructed. One approach is to focus on the predictive
performance of the model; the other is to evaluate whether there is any evidence of shifts in the
parameters in the prediction period.

The Chow Test of Predictive Failure

In the previous section we saw that we could compute the prediction errors by adding a set of dummy
variables to the prediction period observations. It is natural to test whether the prediction errors are
significantly different from 0, and we can do this with an F test of the joint explanatory power of the
dummy variables. Combining the sample and prediction period observations, we run the regression
first without the dummy variables and then with them included. Let the residual sum of squares be
denoted RSSr.p and RSSY’?Jr » » the subscript indicating the number of observations in the regression and
the superscript D indicating the inclusion of the dummy variables. We then see whether the
improvement in the fit on adding the dummy variables is significant, using the F test presented in

Section 4.5. The improvement is (RSSyp —RSS})H) ); the number of dummy variables is P; the

residual sum of squares after adding the dummy variables is RSS;. , ; and the number of degrees of

freedom remaining is the number of observations in the combined sample, 7+P, less the number of
parameters estimated, k+P. The test statistic is therefore

(RSS,,» —RSSP. )/ P

F(P.T—k)=
RSSP , /(T —k)

(12.61)

In practice, you do not even have to run the regression with the dummy variables to perform the
test, because RSS})H) is identical to RSS7, the sum of the squares of the residuals in the regression

limited to the sample period. The fit for this regression is exactly the same as the fit for the first T
observations in the dummy variable regression, which means that the residuals are the same. And
there are no residuals in the last P observations of the dummy variable regression because the
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inclusion of an observation-specific dummy in each observation guarantees a perfect fit in those

observations. Hence RSS;,, is exactly the same as RSSy, and the F statistic can be written

(RSS;,, — RSS;)/ P
RSS, (T — k)

F(P,T —k)= (12.62)

The test is usually known as the Chow test, after its originator, but the interpretation given here is later
(Pesaran, Smith, and Yeo, 1985).

Example

The housing services expenditure function was fitted first for the period 1959-90, giving RSSr =
0.008958, and then for the period 1959-1994, giving RSSr.p = 0.009218. The F statistic is therefore

(0.009218 — 0.008958) / 4

F(4,29)=
(29 0.009218/29

=0.21 (12.63)

The null hypothesis is that the coefficients of the dummy variables are all equal to 0. Since the F
statistic is less than 1, we do not reject it at any significance level. There is no significant difference
between the sample period and prediction period fits and so we conclude that the model is stable.

F Test of Coefficient Stability

If there are sufficient observations in the prediction period, you can perform a Chow test on the lines
of that discussed in Chapter 6 to evaluate whether the coefficients in the sample period and prediction
period appear to be significantly different. To perform the test, you run the regression for the sample
and prediction periods separately, and then for the two periods combined, and see whether sample
period/prediction period division results in a significant improvement in fit compared with that
obtained with the combined regression. If it does, this is evidence that the coefficients are unstable.

Example

In the case of the housing services expenditure function, with the observations for 1959—-1990 being
used as the sample period and those for 1991-1994 as the prediction period, the sums of the squares of
the residuals for the sample period, prediction period, and combination were 0.008958, 0.000002, and
0.009218, respectively. Running separate regressions for the two subperiods costs three degrees of
freedom, and the number of degrees of freedom remaining after estimating six parameters (constant
twice, coefficient of LGDPI twice, and coefficient of LGPRHOUS twice) is 30. Hence we obtain the
following F statistic, which is distributed with 3 and 30 degrees of freedom:

(0.009218 —[0.008958 + 0.000002]) /3
(0.008958 + 0.000002) /30

F3.30)= =0.29 (12.64)
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Thus we conclude that there is no evidence of coefficient instability.

Exercises

12.15 Fit the logarithmic form of your demand function for your category of expenditure for the
periods 1959-1990 and 1959-1994 and perform the Chow test of predictive failure.

12.16 Fit your demand function to the data for 1959-1994, 1959-1990 and 1991-94 and perform the
F test of coefficient stability.
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AUTOCORRELATION

13.1 Definition of Autocorrelation

To this point it has been assumed that the third Gauss—Markov condition, that the value taken by the
disturbance term in any observation be determined independently of its values in all the other
observations, is satisfied, and hence that the population covariance of u; and u; is 0, for i #j. . When
the condition is not satisfied, the disturbance term is said to be subject to autocorrelation, often called
serial correlation (the terms are interchangeable).

The consequences of autocorrelation for OLS are somewhat similar to those of heteroscedasticity.
In general, the regression coefficients remain unbiased, but OLS is inefficient because one can find an
alternative unbiased estimator with smaller variance. The other main consequence, which should not
be mixed up with the first, is that the standard errors are estimated wrongly, probably being biased
downwards. Finally, although in general autocorrelation does not cause OLS estimates to be biased,
there is an important special case where it does.

Possible Causes of Autocorrelation

Autocorrelation normally occurs only in regression analysis using time series data. The disturbance
term in a regression equation picks up the influence of those variables affecting the dependent variable
that have not been included in the regression equation. If the value of u in any observation is to be
independent of its value in the previous one, the value of any variable hidden in u# must be
uncorrelated with its value at the time of the previous observation.

Persistence of the effects of excluded variables is probably the most frequent cause of positive
autocorrelation, the usual type in economic analysis. In Figure 13.1, Y depends on X and a number of
minor variables not included explicitly in the specification. The disturbance term in the model is
generated by the combined effects of these excluded variables. In the first observation, the excluded
variables have a net positive effect and the disturbance term is positive. If the excluded variables
change slowly, their positive effect will persist and the disturbance term will remain positive.
Eventually the balance will change and the net effect of the excluded variables becomes negative.
Now the persistence effect works the other way and the disturbance term remains negative for a few
observations. The duration and amplitude of each positive and negative sequence are essentially
random, but overall there will be a tendency for positive values of the disturbance term to be followed
by positive ones and for negative values to be followed by negative ones.

One important point to note is that autocorrelation is on the whole more likely to be a problem,
the shorter the interval between observations. Obviously, the longer the interval, the less likely are the
effects of the excluded variables to persist from one observation to the next.

© C. Dougherty 2001. All rights reserved. Copies may be made for personal use. Version of 05.06.01.
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Yi

Yt=ﬁ1 +,32Xt

Bl

Xi
Figure 13.1. Positive autocorrelation

In principle autocorrelation may also be negative. This means that the correlation between
successive values of the disturbance term is negative. A positive value in one observation is more
likely to be followed by a negative value than a positive value in the next, and vice versa, the scatter
diagram looking like Figure 13.2. A line joining successive observations to one another would cross
the line relating Y to X with greater frequency than one would expect if the values of the disturbance
term were independent of each other. Economic examples of negative autocorrelation are relatively
uncommon, but sometimes it is induced by manipulations used to transform the original specification
of a model into a form suitable for regression analysis.

Yi

Yt=ﬁ1 +,32Xt

B “

Xi
Figure 13.2. Negative autocorrelation
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13.2 Detection of First-Order Autocorrelation: the Durbin—Watson Test

We will mostly be concerned with first-order autoregressive autocorrelation, often denoted AR(1),
where the disturbance term u in the model

Y, =B+ BXi +u, (13.1)

is generated by the process
U, = pup + &, (13.2)

where & is a random variable whose value in any observation is independent of its value in all the
other observations. This type of autocorrelation is described as autoregressive because u, is being
determined by lagged values of itself plus the fresh element of randomness &, sometimes described as
an innovation. It is described as first-order because u, depends only on u, ; and the innovation. A
process of the type

Uy = Prlpy +PoUr 2 +P3U 3 P4l 4 +P5U 5 + &, (13.3)

would be described as fifth-order autoregressive autocorrelation, denoted AR(5). The main alternative
to autoregressive autocorrelation is moving average (MA) autocorrelation, where u, is determined as a

weighted sum of current and previous values of &. For example, the process
U= A&+ ME + e + 383 (13.4)

would be described as MA(3).

We will focus on AR(1) autocorrelation because it appears to be the most common type, at least
as an approximation. It is described as positive or negative according to the sign of p in (13.2). Note
that if p is 0, there is no autocorrelation after all.

Because AR(1) is such a common form of autocorrelation, the standard test statistic for it, the
Durbin—Watson d statistic, is usually included in the basic diagnostic statistics printed out with the
regression results. It is calculated from the residuals using the expression

T

2(6, - et—l)z
Joi= (13.5)
2
t

M=~

e

~
]
—_

It can be shown (see Appendix 13.1) that in large samples

d—>2-2p (13.6)
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If there is no autocorrelation present, p is 0, so d should be close to 2. If there is positive
autocorrelation, d will tend to be less than 2. If there is negative autocorrelation, it will tend to be
greater than 2. The test assumes that p lies in the interval —1 > p > 1 and hence that d lies between 4
and 0.

The null hypothesis for the test is that p is equal to 0. Of course, even if H, is true, d will not be
exactly equal to 2, except by freak chance. However a value of d much lower than 2 leaves you with
two choices. One is to assume that H, is true and that the low value of d has arisen as a matter of
chance. The other is that the disturbance term is subject to positive autocorrelation. As usual, the
choice is made by establishing a critical value d.; below which d would not sink, say, more than 5
percent of the time. If d were below d..;, you would then reject H, at the 5 percent significance level.

The critical value of d at any significance level depends, as you might expect, on the number of
explanatory variables in the regression equation and the number of observations in the sample.
Unfortunately, it also depends on the particular values taken by the explanatory variables. Thus it is
not possible to construct a table giving the exact critical values for all possible samples, as one can
with the ¢ test and the F test, but it is possible to calculate upper and lower limits for the critical value
of d. Those for positive autocorrelation are usually denoted dy and d.

Figure 13.3 represents the situation schematically, with the arrow indicating the critical level of d,
which will be denoted d.;. If you knew the exact value of d., you could compare the d statistic for
your regression with it. If d > d..;;, you would fail to reject the null hypothesis of no autocorrelation.
If d < d.i, you would reject the null hypothesis and conclude that there is evidence of positive
autocorrelation.

However, all you know is that d,; lies somewhere between d; and dy. This leaves you with three
possible outcomes for the test.

1. d is less than d;. In this case, it must be lower than d.;, so you would reject the null
hypothesis and conclude that positive autocorrelation is present.

2. dis greater than dy. In this case, d must be greater than d, so you would fail to reject the
null hypothesis.

3. d lies between d; and dy. In this case, d might be greater or less than d.. You do not know
which, so you cannot tell whether you should reject or not reject the null hypothesis.

In cases (1) and (2), the Durbin—Watson test gives you a definite answer, but in case (3) you are left in
a zone of indecision, and there is nothing that you can do about it.

Table A.5 at the end of this text gives d; and dy cross-classified by number of explanatory
variables and number of observations, for the 5 percent and 1 percent significance levels, for the case

0 d. dt  du 2 4

Figure 13.3. Durbin—Watson test for autocorrelation, showing the zone of
indeterminacy in the case of suspected positive autocorrelation
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0 2 4-dy Ot 4-d 4

Figure 13.4. Durbin—Watson test for autocorrelation, showing the zone of
indeterminacy in the case of suspected negative autocorrelation

of positive AR(1) autocorrelation. You can see the zone of indecision between d; and dy decreases as
the sample size increases. Testing for negative autocorrelation follows a similar pattern, with the zone
containing the critical value symmetrically located to the right of 2. Since negative autocorrelation is
relatively uncommon, you are expected to calculate the limits of the zone yourself from the figures for
positive autocorrelation for the corresponding number of explanatory variables and number of
observations. This is easy enough to do. As is illustrated in Figure 13.4, 4 — d gives the lower limit,
below which you fail to reject the null hypothesis of no autocorrelation, and 4 — d;, gives the upper
one, above which you conclude that there is evidence of negative autocorrelation.

It should be noted that a low d statistic does not necessarily mean that the model is subject to
AR(1) autocorrelation. It will be low whenever there is a pattern of positive residuals tending to be
followed by positive ones and negative ones by negative ones, and this could be caused by model
misspecification. In particular, it is often caused by the omission of an important variable from the
model, and it may happen if the regression is using an inappropriate mathematical function. We will
discuss these cases of apparent autocorrelation below.

Example

The output shown below gives the result of a logarithmic regression of housing services on disposable
personal income and the relative price of housing services. The Durbin—Watson statistic is 0.85. For
Hy: p=0and H: p # 0, d. is 1.15 for a 1 percent significance test (2 explanatory variables, 36
observations). We would therefore reject H,.

Dependent Variable: LGHOUS
Method: Least Squares
Sample: 1959 1994

Included observations: 36

Variable CoefficientStd. Errort-Statistic Prob
c -2.032685 0.322726 -6.298478 0.0000
LGDPI 1.132248 0.008705 130.0650 0.0000
LGPRHOUS -0.227634 0.065841 -3.457323 0.0015
R-squared 0.998154 Mean dependent var 5.996930
Adjusted R-squared 0.998042 S.D. dependent var 0.377702
S.E. of regression 0.016714 Akaike info criter-5.265522
Sum squared resid 0.009218 Schwarz criterion -5.133562
Log likelihood 97.77939 F-statistic 8920.496

Durbin-Watson stat 0.846451 Prob (F-statistic) 0.000000
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Exercises

13.1 Examine the Durbin—Watson statistic for the logarithmic demand function that you fitted in
Exercise 12.4. Is there evidence of autocorrelation? If so, what are the implications for the
statistical tests you performed?

13.2 If your regression application allows you to graph or print the residuals from a regression, do
this in the case of your logarithmic demand function. Does an inspection of the residuals
corroborate the presence (or absence) of autocorrelation indicated by the Durbin—Watson
statistic?

13.3 What Can You Do about Autocorrelation?

We will consider only the case of AR(1) autocorrelation. It has received the most attention in the
literature because it is intuitively plausible and there is seldom sufficient evidence to make it
worthwhile considering more complicated models. If the observations are taken quarterly or monthly,
however, other models may be more suitable, but we will not investigate them here.
AR(1) autocorrelation can be eliminated by a simple manipulation of the model. Suppose that the
model is
Y = Bi+ BoXi+ u (13.7)
with u, generated by the process
U, = pupy + &, (13.8)
If we lag equation (13.7) by one time period and multiply by p, we have
pYr1 = Bip + BopXi1 + pusy (13.9)
Now subtract (13.9) from (13.7):
Y, - pY = Bi(1-p) + BoX, — BopXio + i — pu,y (13.10)
Hence

Y, = Bi(1-p) + pY1 + BoX, — BopX.i + &, (13.11)

The model is now free from autocorrelation because the disturbance term has been reduced to the
innovation &,. In the case of the more general multiple regression model

Y, =B+ BoXos + ... + BiXi + ws, (13.12)
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with u, following an AR(1) process, we follow the same procedure. We lag the equation and multiply
it by p:

pY,,l = ﬁlp + ﬁZXZ,t—l + ...+ ﬁka,t—l + U, (1313)

Subtracting (13.13) from (13.12) and rearranging, we again derive a model free from autocorrelation:

Y= Bi(1-p) + pYii + BoXoi — BopXo i1 + .. + BXie — BipXir1 + € (13.14)

Note that the model incorporates the nonlinear restriction that the coefficient of the lagged value
of each X variable is equal to minus the product of the coefficients of its current value and Y, ;. This
means that you should not use OLS to fit it. If you did, there would be no guarantee that the
coefficients would conform to the theoretical restrictions. Thus one has to use some nonlinear
estimation procedure instead. The most common are nonlinear least squares, on the lines discussed in
Chapter 5, and maximum-likelihood estimation.

Example

The output below shows the result of a logarithmic regression of housing services on disposable
personal income and the relative price of housing services, using the nonlinear specification
represented by equation (13.14). The model is

LGHOUS, = Bi(1-p) + pLGHOUS, | + B,.LGDPI, - B,pLGDPI, ,
+ BLGPRHOUS, — BspLGPRHOUS, ., + €. (13.15)

The nonlinear specification is reproduced as part of the regression output. C(1), C(2), C(3), and C(4)
are estimates of B, p, B, and B, respectively. The fitted equation is therefore

LGHOUS = C(1)[1 — C(2)] + C(2)LGHOUS(-1) + C(3)LGDPI — C(2)C(3)LGDPI(-1)
+ C(4)LGPRHOUS - C(2)C(4)LGPRHOUS(-1) (13.16)

This equation is reproduced as part of the EViews output. You can see that the estimate of p is very
high indeed, 0.97, suggesting that there was very severe autocorrelation in the original specification.
The estimate of the income elasticity is much lower than in the OLS regression, but the estimate of the
price elasticity is much the same.

We have noted that most regression applications designed for time series analysis include the
Durbin—Watson statistic as a standard component of the output. In the same way, they usually have a
built-in option for fitting models where the disturbance term has an AR(1) specification, making it
unnecessary to use a nonlinear equation such as (13.16) to spell out the structure of the model. In the
case of EViews, adding AR(1) to the list of regressors converts the specification from OLS to that
appropriate for AR(1) autocorrelation. Early regression applications tended to use the Cochrane—
Orcutt iterative procedure, described in the box. It effectively enables the nonlinear AR(1) model to
be fitted using linear regression analysis, a major benefit when computers were still in their infancy
and nonlinear estimation was so time-consuming that it was avoided if possible. Now that nonlinear
regression is a standard feature of major regression applications, the Cochrane—Orcutt iterative
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The Cochrane-Orcutt Iterative Procedure for Eliminating AR(1) Autocorrelation

The starting point for the Cochrane—Orcutt iterative procedure is equation
(13.10), which may be rewritten

Y, =B, +B,X, +¢,

where ¥, =Y, —pY, |, X, =X, —pX, ,,and B, = Bi(1 - p). If you knew the value

of p, all you would have to do would be to calculate ¥, and X, from the data on ¥

and X, and perform a simple regression of )7, on X .- The coefficient of X , would

be a direct estimate of f3,, and the intercept could be used to derive an estimate of f3;.
Of course, you do not know p and it has to be estimated, along with the other
parameters of the model. The Cochrane—Orcutt iterative procedure does this by
assuming that if the disturbance term follows an AR(1) process, the residuals will do
so as well (approximately), and hence a regression of e, on ¢, ; will yield an estimate
of p. The procedure involves the following steps:

Y is regressed on X with the original, untransformed data.
The residuals are calculated.

1
2
3. e isregressed on e, to obtain an estimate of p.
4

17l and X , are calculated using this estimate of p and the equation at the top
of the box is fitted. The coefficient of X , provides a revised estimate of 3,

and the estimate of 3, yields a revised estimate of f3;.

5. The residuals are recalculated and the process returns to step 3.

The process alternates between revising the estimates of ; and [,, and revising the
estimate of p, until convergence is obtained, that is, until the estimates at the end of
the latest cycle are the same as the estimates at the end of the previous one, to a
prespecified number of decimal places.

procedure is mainly of historical interest and most applications designed for time series analysis offer
alternative methods.

The output for the logarithmic demand function for housing is shown. You can see that the
regression results are identical to those for the explicit nonlinear specification. Note that the
coefficient of AR(1) is the estimate of p, and corresponds to C(2) in the previous regression.
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Dependent Variable: LGHOUS

Method: Least Squares

Sample (adjusted) : 1960 1994

Included observations: 35 after adjusting endpoints

Convergence achieved after 6 iterations

LGHOUS=C (1) * (1-C(2))+C(2) *LGHOUS (-1) +C(3) *LGDPI-C(2) *C(3)
*L,GDPI (-1) +C (4) *LGPRHOUS-C (2) *C (4) *LGPRHOUS (-1)

CoefficientStd. Errort-Statistic Prob.

Cc(1) 6.131576 0.727244 8.431251 0.0000
c(2) 0.972488 0.004167 233.3567 0.0000
C(3) 0.275879 0.078318 3.522532 0.0013
C(4) -0.303387 0.085802 -3.535896 0.0013
R-squared 0.999695 Mean dependent var 6.017555
Adjusted R-squared 0.999665 S.D. dependent var 0.362063
S.E. of regression 0.006622 Akaike info criter-7.089483
Sum squared resid 0.001360 Schwarz criterion -6.911729
Log likelihood 128.0660 F-statistic 33865.14
Durbin-Watson stat 1.423030 Prob (F-statistic) 0.000000
Dependent Variable: LGHOUS
Method: Least Squares
Sample (adjusted) : 1960 1994
Included observations: 35 after adjusting endpoints
Convergence achieved after 24 iterations
Variable CoefficientStd. Errort-Statistic Prob.
c 6.131573 0.727241 8.431276 0.0000
LGDPI 0.275879 0.078318 3.522534 0.0013
LGPRHOUS -0.303387 0.085802 -3.535896 0.0013
AR(1) 0.972488 0.004167 233.3540 0.0000
R-squared 0.999695 Mean dependent var 6.017555
Adjusted R-squared 0.999665 S.D. dependent var 0.362063
S.E. of regression 0.006622 Akaike info criter-7.089483
Sum squared resid 0.001360 Schwarz criterion -6.911729
Log likelihood 128.0660 F-statistic 33865.14
Durbin-Watson stat 1.423031 Prob (F-statistic) 0.000000
Inverted AR Roots 97
Exercise

13.3 Perform a logarithmic regression of expenditure on your commodity on income and relative
price, first using OLS and then using the option for AR(1) regression. Compare the coefficients
and standard errors of the two regressions and comment.

13.4 Autocorrelation with a Lagged Dependent Variable

Suppose that you have a model in which the dependent variable, lagged one time period, is used as one
of the explanatory variables (for example, a partial adjustment model). When this is the case,
autocorrelation is likely to cause OLS to yield inconsistent estimates.
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For example, suppose the model is of the form
Y, = Bi+ BX + BiYi +u, (13.17)

If there were no autocorrelation, OLS would yield consistent estimates. Strictly speaking, the use of
the lagged dependent variable will make OLS estimates subject to some element of bias in finite
samples, but in practice this bias is not considered serious and is ignored. However, if the disturbance
term is subject to autocorrelation, the situation is entirely different. We will investigate the case where
u, is subject to AR(1) autocorrelation

U, = pupy + &, (13.18)
Then the model may be rewritten
Y, =i+ BX + BsY + puy + €, (13.19)
Lagging (13.17) one period, we see that
Yoo =61+ BoXii + B3Yio + upy (13.20)

Hence in (13.19) we have a violation of the fourth Gauss—Markov condition. One of the explanatory
variables, Y, i, is partly determined by u, ;, which is also a component of the disturbance term. As a
consequence, OLS will yield inconsistent estimates. It is not hard to obtain an analytical expression
for the large-sample bias, but it is laborious and it will not be attempted here.

Detection of Autocorrelation with a Lagged Dependent Variable

As Durbin and Watson noted in their original article, the Durbin—Watson d statistic is invalid when the
regression equation includes a lagged dependent variable. It tends to be biased towards 2, increasing
the risk of a Type II error. In this case one may use the Durbin £ statistic (Durbin, 1970), which is
also computed from the residuals. It is defined as

h=p |——— (13.21)
1—”51;”,,)

where p is an estimate of p in the AR(1) process, SZYH) is an estimate of the variance of the

coefficient of the lagged dependent variable Y, |, and n is the number of observations in the regression.
Note that n will usually be one less than the number of observations in the sample because the first
observation is lost when the equation is fitted. There are various ways in which one might estimate p
but, since this test is valid only for large samples, it does not matter which you use. The most
convenient is to take advantage of the large-sample relationship between d and p:

d—2-2p (13.22)
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From this one estimates p as (1 —%d). The estimate of the variance of the lagged dependent
variable is obtained by squaring its standard error. Thus £ can be calculated from the usual regression
results. In large samples, £ is distributed as N(0,1), that is, as a normal variable with mean 0 and unit
variance, under the null hypothesis of no autocorrelation. The hypothesis of no autocorrelation can
therefore be rejected at the 5 percent significance level if the absolute value of 4 is greater than 1.96,
and at the 1 percent significance level if it is greater than 2.58, using two-tailed tests and a large
sample.

A common problem with this test is that the 4 statistic cannot be computed if n s fz is greater than 1,

. . . . 2 .
which can happen if the sample size is not very large. An even worse problem occurs when ns; is

near to, but less than, 1. In such a situation the / statistic could be enormous, without there being any
problem of autocorrelation. For this reason it is a good idea to keep an eye on the d statistic as well,
despite the fact that it is biased.

Example

The partial adjustment model leads to a specification with a lagged dependent variable. That for the
logarithmic demand function for housing services was used as an exercise in the previous chapter.
The output is reproduced below. The Durbin—Watson statistic is 1.72. (1 —%d) = 0.14 gives us an
estimate of p. The standard error of the lagged dependent variable is 0.0451. Thus our estimate of the
variance of its coefficient is 0.0020. There are 36 observations in the sample, but the first cannot be
used and n is 35. Hence the £ statistic is

hzO.14X\/L =0.86 (13.23)
1-35x%0.0020

This is below 1.96 and so, at the 5 percent significance level, we do not reject the null hypothesis of no
autocorrelation (reminding ourselves of course, that this is a large-sample test and we have only 35
observations).

Dependent Variable: LGHOUS

Method: Least Squares

Sample (adjusted) : 1960 1994

Included observations: 35 after adjusting endpoints

Variable CoefficientStd. Errort-Statistic Prob.
C -0.390249 0.152989 -2.550839 0.0159
LGDPI 0.313919 0.052510 5.978243 0.0000
LGPRHOUS -0.067547 0.024689 -2.735882 0.0102
LGHOUS (-1) 0.701432 0.045082 15.55895 0.0000
R-squared 0.999773 Mean dependent var 6.017555
Adjusted R-squared 0.999751 S.D. dependent var 0.362063
S.E. of regression 0.005718 Akaike info criter-7.383148
Sum squared resid 0.001014 Schwarz criterion -7.205394
Log likelihood 133.2051 F-statistic 45427.98

Durbin-Watson stat 1.718168 Prob (F-statistic) 0.000000
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Autocorrelation in the Partial Adjustment and Adaptive Expectations Models

The partial adjustment model
Y, =B, +B,X, +u,
Y, =Y, =AY, -Y.) (O<A<1)
leads to the regression specification
Y, =BA+B,AX, +(1-A)Y,_, + Au,

Hence the disturbance term in the fitted equation is a fixed multiple of that in the first
equation and combining the first two equations to eliminate the unobservable ¥,” will not

have introduced any new complication. In particular, it will not have caused the
disturbance term to be autocorrelated, if it is not autocorrelated in the first equation. By
contrast, in the case of the adaptive expectations model,

Yt :ﬁl +ﬁ2Xte+l +uz

- X =MX, - XP)

t+1

the Koyck transformation would cause a problem. The fitted equation is then
Y, =B A+ (A=Y, + BAX, +u, —(1-Du,_,

and the disturbance term is subject to moving average autocorrelation. We noted that we
could not discriminate between the two models on the basis of the variable specification
because they employ exactly the same variables. Could we instead use the properties of
the disturbance term to discriminate between them? Could we regress Y, on X; and Y, 4,
test for autocorrelation, and conclude that the dynamics are attributable to a partial
adjustment process if we do not find autocorrelation, and to an adaptive expectations
process if we do?

Unfortunately, this does not work. If we do find autocorrelation, it could be that the
true model is a partial adjustment process, and that the original disturbance term was
autocorrelated. Similarly, the absence of autocorrelation does not rule out an adaptive
expectations process. Suppose that the disturbance term u, is subject to AR(1)
autocorrelation:
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Autocorrelation in the Partial Adjustment and Adaptive Expectations Models
(continued)

U = Pup + &
Then
u— (1= Dupy = pu+&—(1- MDu=&-(1-21- p) U

Now it is reasonable to suppose that both A and p will lie between 0 and 1, and hence it is
possible that their sum might be close to 1. If this is the case, the disturbance term in the
fitted model will be approximately equal to &, and the AR(1) autocorrelation will have
been neutralized by the Koyck transformation.

13.5 The Common Factor Test

We now return to the ordinary AR(1) model to investigate it a little further. The nonlinear equation

Y, = Bi(1—p) + pYii + BoX, — BopXi + &, (13.24)

fitted on the hypothesis that the disturbance term is subject to AR(1) autocorrelation, is a restricted
version of the more general ADL(1,1) model (autoregressive distributed lag, the first argument
referring to the maximum lag in the Y variable and the second to the maximum lag in the X
variable(s))

Y, = 2,1 + AZYt—l + 2,3X, + 2,4X,_1 + &, (1325)
with the restriction
A = —oAs. (13.26)

The presence of this implicit restriction provides us with an opportunity to test the validity of the
model specification. This will help us to discriminate between cases where the d statistic is low
because the disturbance term is genuinely subject to an AR(1) process and cases where it is low for
other reasons. The theory behind the test procedure will not be presented here (for a summary, see
Hendry and Mizon, 1978), but you should note that the usual F test of a restriction is not appropriate
because the restriction is nonlinear. Instead we calculate the statistic
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n log(RSSr/RSSv) (13.27)

where n is the number of observations in the regression, RSSx and RSSy are the residual sums of
squares from the restricted model (13.24) and the unrestricted model (13.25), and the logarithm is to
base e. Remember that n will usually be one less than the number of observations in the sample
because the first observation is lost when (13.24) and (13.25) are fitted. Strictly speaking, this is a
large sample test. Ii the original model has only one explanatory variable, as in this case, the test
statistic has a chi-squared distribution with one degree of freedom under the null hypothesis that the
restriction is valid. As we saw in the previous section, if we had started with the more general model

Y, =B+ BoXoi + ... + BiXi + uy, (13.28)
the restricted model would have been

Y, = Bi(1 —p) + pYi + BoXor — BopXosr + ... + BiXie — BipXiso1 + & (13.29)

There are now k — 1 restrictions because the model imposes the restriction that the coefficient of the
lagged value of each explanatory variable is equal to minus the coefficient of its current value
multiplied by the coefficient of the lagged dependent variable Y, ;. Under the null hypothesis that the
restrictions are valid, the test statistic has a chi-squared distribution with k — 1 degrees of freedom.

If the null hypothesis is not rejected, we conclude that the AR(1) model is an adequate
specification of the data. If it is rejected, we have to work with the unrestricted ADL(1,1) model

Yt = ),1 + /IZYt—l + ),3X2, + ),4X2,t,1 + ...+ lzk,let + )vZka,zfl + &, (1330)

including the lagged value of Y and the lagged values of all the explanatory variables as regressors.
The problem of multicollinearity will often be encountered when fitting the unrestricted model,
especially if there are several explanatory variables. Sometimes it can be alleviated by dropping those
variables that do not have significant coefficients, but precisely because multicollinearity causes ¢
statistics to be low, there is a risk that you will end up dropping variables that do genuinely belong in
the model.

Two further points. First, if the null hypothesis is not rejected, the coefficient of Y, ; may be
interpreted as an estimate of p. If it is rejected, the whole of the AR(1) story is abandoned and the
coefficient of Y, in the unrestricted version does not have any special interpretation. Second, when
fitting the restricted version using the specification appropriate for AR(1) autocorrelation, the
coefficients of the lagged explanatory variables are not reported. If for some reason you need them,
you could calculate them easily yourself, as minus the product of the coefficient of Y, ; and the
coefficients of the corresponding current explanatory variables. The fact that the lagged variables,
other than Y, ;, do not appear explicitly in the regression output does not mean that they have not been
included. They have.

Example

The output for the AR(1) regression for housing services has been shown above. The residual sum of
squares was 0.001360. The unrestricted version of the model yields the following result:
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Dependent Variable: LGHOUS

Method: Least Squares

Sample (adjusted) : 1960 1994

Included observations: 35 after adjusting endpoints

Variable CoefficientStd. Errort-Statistic Prob.
c -0.386286 0.177312 -2.178563 0.0376
LGDPI 0.301400 0.066582 4.526717 0.0001
LGPRHOUS -0.192404 0.078085 -2.464038 0.0199
LGHOUS (-1) 0.726714 0.064719 11.22884 0.0000
LGDPI (-1) -0.014868 0.092493 -0.160748 0.8734
LGPRHOUS (-1) 0.138894 0.084324 1.647143 0.1103
R-squared 0.999797 Mean dependent var 6.017555
Adjusted R-squared 0.999762 S.D. dependent var 0.362063
S.E. of regression 0.005589 Akaike info criter-7.381273
Sum squared resid 0.000906 Schwarz criterion -7.114642
Log likelihood 135.1723 F-statistic 28532.58
Durbin-Watson stat 1.517562 Prob (F-statistic) 0.000000

Before we perform the common factor test, we should check that the unrestricted model is free
from autocorrelation. Otherwise neither it nor the AR(1) model would be satisfactory specifications.

The & statistic is given by
h:O.24x1/L:1.54 (13.31)
1-35x%x0.0042

This is below 1.96 and so we do not reject the null hypothesis of no autocorrelation.

Next we will check whether the coefficients appear to satisfy the restrictions implicit in the AR(1)
model. Minus the product of the lagged dependent variable and the income elasticity is —
0.7267x0.3014 = -0.22. The coefficient of lagged income is numerically much lower than this.
Minus the product of the lagged dependent variable and the price elasticity is —0.7267 x —0.1924 =
0.14, which is identical to the coefficient of lagged price, to two decimal places. Hence the restriction
for the price side of the model appears to be satisfied, but that for the income side does not.

The common factor test confirms this preliminary observation. The residual sum of squares has
fallen to 0.000906. The test statistic is 35 10g(0.001360/0.000906) = 14.22. The critical value of chi-
squared at the 0.1 percent level with two degrees of freedom is 13.82, so we reject the restrictions
implicit in the AR(1) model and conclude that we should use the unrestricted ADL(1,1) model instead.

We note that the lagged income and price variables in the unrestricted model do not have
significant coefficients, so we consider dropping them and arrive at the partial adjustment model
specification already considered above. As we saw, the £ statistic is 0.86, and we conclude that this is
a satisfactory specification.

Exercises

13.4 A researcher has annual data on the rate of growth of aggregate consumer expenditure on
financial services, f;, the rate of growth of aggregate disposable personal income, x;, and the rate
of growth of the relative price index for consumer expenditure on financial services, p,, for the
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United States for the period 1959-1994 and fits the following regressions (standard errors in
parentheses; method of estimation as indicated):

1: OLS 2: AR(1) 3: OLS 4: OLS
x 1.20 1.31 1.37 0.32
(0.06) 0.11) 0.17) (0.10)
p -0.10 -0.21 025 ~0.11
(0.03) (0.06) (0.08) (0.07)
0.61 0.75
) - - 0.17) (0.15)
-0.90
) - - (0.35) -
-0.11
p(=1) - - (0.09) -
constant 0.01 -0.04 -0.05 0.03
(0.05) (0.09) (0.10) (0.08)
p - 0.55 - -
R? 0.80 0.82 0.84 0.81
RSS 40.1 35.2 32.1 37.1
d 0.74 1.78 1.75 1.26

Explain the relationship between the second and third specifications, perform a common factor
test, and discuss the adequacy of each specification.

Perform a logarithmic regression of expenditure on your category of consumer expenditure on

income and price using an AR(1) estimation technique. Perform a second regression with the

same variables but adding the lagged variables as regressors and using OLS. With an £ test,

check that the second specification is not subject to autocorrelation.

Explain why the first regression is a restricted version of the second, stating the restrictions,
and check whether the restrictions appear to be satisfied by the estimates of the coefficients of

the second regression. Perform a common factor test. If the AR(1) model is rejected, and there

are terms with insignificant coefficients in the second regression, investigate the consequences

of dropping them.

Year Y K L Year Y K L

1899 100 100 100 1911 153 216 145
1900 101 107 105 1912 177 226 152
1901 112 114 110 1913 184 236 154
1902 122 122 118 1914 169 244 149
1903 124 131 123 1915 189 266 154
1904 122 138 116 1916 225 298 182
1905 143 149 125 1917 227 335 196
1906 152 163 133 1918 223 366 200
1907 151 176 138 1919 218 387 193
1908 126 185 121 1920 231 407 193
1909 155 198 140 1921 179 417 147
1910 159 208 144 1922 240 431 161

Source: Cobb and Douglas (1928)

The table gives the data used by Cobb and Douglas (1928) to fit the original Cobb-Douglas

production function:
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Yr = ﬁleﬁz Lfig vy

Y, K;, and L,, being index number series for real output, real capital input, and real labor input,
respectively, for the manufacturing sector of the United States for the period 1899-1922
(1967=100). The model was linearized by taking logarithms of both sides and the following
regressions were run (standard errors in parentheses; method of estimation as indicated):

1: OLS 2: AR(1) 3: OLS

log K 0.23 0.22 0.18
(0.06) (0.07) (0.56)
log L 0.81 0.86 1.03
(0.15) (0.16) (0.15)
log Y(-1) ; ; (8:‘2‘(1))
0.17
log K(=1) - - 051)
-1.01
log L(-1) ; ; (025)
constant —0.18 —0.35 1.04
(0.43) 0.51) 0.41)
p i 0.19 )
0.25)
R? 0.96 0.96 0.98
RSS 0.0710 0.0697 0.0259
d 1.52 1.54 1.46

Evaluate the three regression specifications.
13.6 Apparent Autocorrelation

As has been seen above, a positive correlation among the residuals from a regression, and a
correspondingly low Durbin—Watson statistic, may be attributable to the omission of one or more
lagged variables from the model specification, rather than to an autocorrelated disturbance term. We
will describe this as apparent autocorrelation. Although the examples above relate to the omission of
lagged variables, it could arise from the omission of any important variable from the regression
specification.

Apparent autocorrelation can also arise from functional misspecification. For example, we saw in
Section 5.1 that, if the true model is of the form

Y=/31+%+u (13.32)

and we execute a linear regression, we obtain the fit illustrated in Figure 5.1 and summarized in Table
5.2: a negative residual in the first observation, positive residuals in the next six, and negative
residuals in the last three. In other words, there appears to be very strong positive autocorrelation.

However, when the regression is of the form
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Y=b +b,X'

where X' is defined as 1/X, not only does one obtain a much better fit but the autocorrelation

disappears.

The most straightforward way of detecting autocorrelation caused by functional misspecification
is to look at the residuals directly. This may give you some idea of the correct specification. The
Durbin—Watson d statistic may also provide a signal, although of course a test based on it would be
invalid since the disturbance term is not AR(1) and the use of an AR(1) specification would be

inappropriate.
indicating that something was wrong with the specification.

Exercises

13.7* Using the 50 observations on two variables ¥ and X shown in the diagram, an investigator runs
the following five regressions (standard errors in parentheses; estimation method as indicated;

all variables as logarithms in the logarithmic regressions):

In the case of the example just described, the Durbin—Watson statistic was 0.86,

1 2 3 4 5
linear logarithmic
OLS AR(1) OLS AR(1) OLS
X 0.178 0.223 2.468 2.471 1.280
(0.008) (0.027) (0.029) (0.033) (0.800)
Y(-1) - - - - 0.092
(0.145)
X(-1) - - - - 0.966
(0.865)
- 0.87 - 0.08 -
(0.06) (0.14)
constant -24.4 -39.7 -11.3 -11.4 -10.3
2.9) (12.1) 0.2) 0.2) (1.7)
R? 0.903 0.970 0.993 0.993 0.993
RSS 6286 1932 1.084 1.070 1.020
d 0.35 3.03 - 1.82 2.04 2.08
Y
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Discuss each of the five regressions, stating, with reasons, which is your preferred specification.

13.8* Using the data on food in the Demand Functions data set, the following regressions were run,
each with the logarithm of food as the dependent variable: (1) an OLS regression on a time
trend 7 defined to be 1 in 1959, 2 in 1960, etc.; (2) an AR(1) regression using the same
specification; and (3) an OLS regression on 7" and the logarithm of food lagged one time period,
with the results shown in the table (standard errors in parentheses):

1: OLS 2: AR(1) 3: OLS

T 0.0181 0.0166 0.0024
(0.0005)  (0.0021)  (0.0016)

LGFOOD(-1) ) 0.8551

(0.0886)

Constant 5.7768 5.8163 0.8571
(0.0106)  (0.0586)  (0.5101)

. ) 0.8551 ]

p (0.0886)

R 0.9750 0.9931 0.9931

RSS 0.0327 0.0081 0.0081

d 0.2752 1.3328 1.3328

h - - 2.32

Discuss why each regression specification appears to be unsatisfactory. Explain why it was not
possible to perform a common factor test.

13.7 Model Specification: Specific-to-General versus General-to-Specific

Let us review our findings with regard to the demand function for housing services. We started off
with a static model and found that it had an unacceptably-low Durbin—Watson statistic. Under the
hypothesis that the relationship was subject to AR(1) autocorrelation, we ran the AR(1) specification.
We then tested the restrictions implicit in this specification, and found that we had to reject the AR(1)
specification, preferring the unrestricted ADL(1,1) model. Finally we found that we could drop off the
lagged income and price variables, ending up with a specification that could be based on a partial
adjustment model. This seemed to be a satisfactory specification, particularly given the nature of the
type of expenditure, for we do expect there to be substantial inertia in the response of expenditure on
housing services to changes in income and relative price. We conclude that the reason for the low
Durbin—Watson statistic in the original static model was not AR(1) autocorrelation but the omission of
an important regressor (the lagged dependent variable).
The research strategy that has implicitly been adopted can be summarized as follows:

On the basis of economic theory, experience, and intuition, formulate a provisional model.
Locate suitable data and fit the model.

Perform diagnostic checks.

If any of the checks reveal inadequacies, revise the specification of the model with the aim of

bl o e

eliminating them.
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5. When the specification appears satisfactory, congratulate oneself on having completed the task
and quit.

The danger with this strategy is that the reason that the final version of the model appears
satisfactory is that you have skilfully massaged its specification to fit your particular data set, not that
it really corresponds to the true model. The econometric literature is full of two types of indirect
evidence that this happens frequently, particularly with models employing time series data, and
particularly with those modeling macroeconomic relationships. It often happens that researchers
investigating the same phenomenon with access to the same sources of data construct internally
consistent but mutually incompatible models, and it often happens that models that survive sample
period diagnostic checks exhibit miserable predictive performance. The literature on the modeling of
aggregate investment behavior is especially notorious in both respects. Further evidence, if any were
needed, has been provided by experiments showing that it is not hard to set up nonsense models that
survive the conventional checks (Peach and Webb, 1983). As a consequence, there is growing
recognition of the fact that the tests eliminate only those models with the grossest misspecifications,
and the survival of a model is no guarantee of its validity.

This is true even of the tests of predictive performance described in the previous chapter, where
the models are subjected to an evaluation of their ability to fit fresh data. There are two problems with
these tests. First, their power may be rather low. It is quite possible that a misspecified model will fit
the prediction period observations well enough for the null hypothesis of model stability not to be
rejected, especially if the prediction period is short. Lengthening the prediction period by shortening
the sample period might help, but again there is a problem, particularly if the sample is not large. By
shortening the sample period, you will increase the population variances of the estimates of the
coefficients, so it will be more difficult to determine whether the prediction period relationship is
significantly different from the sample period relationship.

The other problem with tests of predictive stability is the question of what the investigator does if
the test is failed. Understandably, it is unusual for an investigator to quit at that point, acknowledging
defeat. The natural course of action is to continue tinkering with the model until this test too is passed,
but of course the test then has no more integrity than the sample period diagnostic checks.

This unsatisfactory state of affairs has generated interest in two interrelated topics: the possibility
of eliminating some of the competing models by confronting them with each other, and the possibility
of establishing a more systematic research strategy that might eliminate bad model building in the first
place.

Comparison of Alternative Models

The comparison of alternative models can involve much technical complexity and the present
discussion will be limited to a very brief and partial outline of some of the issues involved. We will
begin by making a distinction between nested and nonnested models. A model is said to be nested
inside another if it can be obtained from it by imposing a number of restrictions. Two models are said
to be nonnested if neither can be represented as a restricted version of the other. The restrictions may
relate to any aspect of the specification of the model, but the present discussion will be limited to
restrictions on the parameters of the explanatory variables in a single equation model. It will be
illustrated with reference to the demand function for housing services, with the logarithm of
expenditure written Y and the logarithms of the income and relative price variables written X, and X;.
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Figure 13.5. Nesting structure for models A, B, C, and D.

Three alternative dynamic specifications have been considered: the ADL(1,1) model including current
and lagged values of all the variables and no parameter restrictions, which will be denoted model A;
the model that hypothesized that the disturbance term was subject to an AR(1) process (model B); and
the model with only one lagged variable, the lagged dependent variable (model C). For good measure
we will add the original static model (model D).

(A) Yi=A + MY + Xy +AXo g+ AsXs + AXs o + & (13.34)
B) Yi=Al(1-4) +ALY 0 + Xy —bAXo, 1+ AsXs — AsX;, 1+ &, (13.36)
(©) Y,=A + Y + Xy + AsX;, + &, (13.35)
D) Yi=4 + A3 Xy, + AsXs, + &, (13.37)

The ADL(1,1) model is the most general model and the others are nested within it. For model B
to be a legitimate simplification, the common factor test should not lead to a rejection of the
restrictions. For model C to be a legitimate simplification, Hy: Ay = A¢ = 0 should not be rejected. For
model D to be a legitimate simplification, Hy: A, = A4 = A¢ = 0 should not be rejected. The nesting
structure is represented by Figure 13.5.

In the case of the demand function for housing, if we compare model B with model A, we find
that the common factor restrictions implicit in model B are rejected and so it is struck off our list of
acceptable specifications. If we compare model C with model A, we find that it is a valid alternative
because the estimated coefficients of lagged income and price variables are not significantly different
from 0O, or so we asserted rather loosely at the end of Section 13.5. Actually, rather than performing ¢
tests on their individual coefficients, we should be performing an F' test on their joint explanatory
power, and this we will hasten to do. The residual sums of squares were 0.000906 for model A and
0.001014 for model C. The relevant F' statistic, distributed with 2 and 29 degrees of freedom, is
therefore 1.73. This is not significant even at the 5 percent level, so model C does indeed survive.
Finally, model D must be rejected because the restriction that the coefficient of Y, ; is O is rejected by a
simple ¢ test. (In the whole of this discussion, we have assumed that the test procedures are not



AUTOCORRELATION 22

substantially affected by the use of a lagged dependent variable as an explanatory variable. This is
strictly true only if the sample is large.)

The example illustrates the potential both for success and for failure within a nested structure:
success in that two of the four models are eliminated and failure in that some indeterminacy remains.
Is there any reason for preferring A to C or vice versa? Some would argue that C should be preferred
because it is more parsimonious in terms of parameters, requiring only four instead of six. It also has
the advantage of lending itself to the intuitively-appealing interpretation involving short-run and long-
run dynamics discussed in the previous chapter. However, the efficiency/potential bias trade-off
between including and excluding variables with insignificant coefficients discussed in Chapter 7
makes the answer unclear.

What should you do if the rival models are not nested? One possible procedure is to create a
union model embracing the two models as restricted versions and to see if any progress can be made
by testing each rival against the union. For example, suppose that the rival models are

(E) Y=M4+LXo + X5+ &, (13.38)
(F) Y=+ LXo + Xy + &, (13.39)
Then the union model would be

(G) Y=4 + LXo + X3 + LXy + &, (13.40)

We would then fit model G, with the following possible outcomes: the estimate of A is significant, but
that of A4 is not, so we would choose model E; the estimate of A; is not significant, but that of A is
significant, so we would choose model F; the estimates of both A; and A4 are significant (a surprise
outcome), in which case we would choose model G; neither estimate is significant, in which case we
could test G against the simple model

(H) Y=4h+LX;+¢, (13.41)

and we might prefer the latter if an F test does not lead to the rejection of the null hypothesis
Hy: A3 = A4 =0. Otherwise we would be unable to discriminate between the three models

There are various potential problems with this approach. First, the tests use model G as the basis
for the null hypotheses, and it may not be intuitively appealing. If models E and F are constructed on
different principles, their union may be so implausible that it could be eliminated on the basis of
economic theory. The framework for the tests is then undermined. Second, the last possibility,
indeterminacy, is likely to be the outcome if X3 and X4 are highly correlated. For a more extended
discussion of the issues, and further references, see Kmenta (1986), pp. 595-598.

The General-to-Specific Approach to Model Specification
We have seen that, if we start with a simple model and elaborate it in response to diagnostic checks,

there is a risk that we will end up with a false model that satisfies us because, by successive
adjustments, we have made it appear to fit the sample period data, "appear to fit" because the
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diagnostic tests are likely to be invalid if the model specification is incorrect. Would it not be better,
as some writers urge, to adopt the opposite approach. Instead of attempting to develop a specific
initial model into a more general one, should we not instead start with a fully general model and
reduce it to a more focused one by successively imposing restrictions (after testing their validity)?

Of course the general-to-specific approach is preferable, at least in principle. The problem is that,
in its pure form, it is often impracticable. If the sample size is limited, and the initial specification
contains a large number of potential explanatory variables, multicollinearity may cause most or even
all of them to have insignificant coefficients. This is especially likely to be a problem in time series
models. In an extreme case, the number of variables may exceed the number of observations, and the
model could not be fitted at all. Where the model may be fitted, the lack of significance of many of
the coefficients may appear to give the investigator considerable freedom to choose which variables to
drop. However, the final version of the model may be highly sensitive to this initial arbitrary decision.
A variable that has an insignificant coefficient initially and is dropped might have had a significant
coefficient in a cut-down version of the model, had it been retained. The conscientious application of
the general-to-specific principle, if applied systematically, might require the exploration of an
unmanageable number of possible model-reduction paths. Even if the number were small enough to
be explored, the investigator may well be left with a large number of rival models, none of which is
dominated by the others.

Therefore, some degree of compromise is normally essential, and of course there are no rules for
this, any more than there are for the initial conception of a model in the first place. A weaker but more
operational version of the approach is to guard against formulating an initial specification that imposes
restrictions that a priori have some chance of being rejected. However, it is probably fair to say that
the ability to do this is one measure of the experience of an investigator, in which case the approach
amounts to little more than an exhortation to be experienced. For a nontechnical discussion of the
approach, replete with entertainingly caustic remarks about the shortcomings of specific-to-general
model-building and an illustrative example by a leading advocate of the general-to-specific approach,
see Hendry (1979).

Exercises

13.9 A researcher is considering the following alternative regression models:

Y, = ﬁl + ﬁZYH + ﬁ3Xt + ﬁ4Xz—l + U; (1)
AY, =+ pAX, + v, 2)
Y, =68 + 86X, +w, 3)

where AY, =Y, - Y, |, AX,=X,— X1, and u,, v,, and w, are disturbance terms..

(a) Show that models (2) and (3) are restricted versions of model (1), stating the restrictions.

(b) Explain the implications for the disturbance terms in (1) and (2) if (3) is the correct
specification and w, satisfies the Gauss—Markov conditions. What problems, if any, would
be encountered if ordinary least squares were used to fit (1) and (2)?

13.10*Explain how your answer to Exercise 13.9 illustrates some of the methodological issues
discussed in this section.



